
Effective and Scalable Clustering on Massive Attributed Graphs
Renchi Yang

Nanyang Technological University

rcyang@ntu.edu.sg

Jieming Shi
∗

Hong Kong Polytechnic University

jieming.shi@polyu.edu.hk

Yin Yang

Hamad bin Khalifa University

yyang@hbku.edu.qa

Keke Huang

National University of Singapore

kkhuang@nus.edu.sg

Shiqi Zhang

National University of Singapore

s-zhang@comp.nus.edu.sg

Xiaokui Xiao

National University of Singapore

xkxiao@nus.edu.sg

ABSTRACT
Given a graph 𝐺 where each node is associated with a set of at-

tributes, and a parameter𝑘 specifying the number of output clusters,

𝑘-attributed graph clustering (𝑘-AGC) groups nodes in 𝐺 into 𝑘 dis-

joint clusters, such that nodes within the same cluster share similar

topological and attribute characteristics, while those in different

clusters are dissimilar. This problem is challenging on massive

graphs, e.g., with millions of nodes and billions of attribute values.

For such graphs, existing solutions either incur prohibitively high

costs, or produce clustering results with compromised quality.

In this paper, we propose ACMin, an efficient approach to 𝑘-AGC

that yields high-quality clusters with costs linear to the size of the

input graph 𝐺 . The main contributions of ACMin are twofold: (i)

a novel formulation of the 𝑘-AGC problem based on an attributed
multi-hop conductance quality measure custom-made for this prob-

lem setting, which effectively captures cluster coherence in terms

of both topological proximities and attribute similarities, and (ii) a

linear-time optimization solver that obtains high quality clusters

iteratively, based on efficient matrix operations such as orthogonal

iterations, an alternative optimization approach, as well as an ini-

tialization technique that significantly speeds up the convergence

of ACMin in practice.

Extensive experiments, comparing 11 competitors on 6 real

datasets, demonstrate that ACMin consistently outperforms all

competitors in terms of result quality measured against ground

truth labels, while being up to orders of magnitude faster. In par-

ticular, on the Microsoft Academic Knowledge Graph dataset with

265.2 million edges and 1.1 billion attribute values, ACMin outputs

high-quality results for 5-AGC within 1.68 hours using a single

CPU core, while none of the 11 competitors finish within 3 days.

ACM Reference Format:
Renchi Yang, Jieming Shi, Yin Yang, Keke Huang, Shiqi Zhang, and Xiaokui

Xiao. 2021. Effective and Scalable Clustering on Massive Attributed Graphs.

In IW3C2. ACM, New York, NY, USA, 13 pages.

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

TheWebConf ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 Association for Computing Machinery.

1 INTRODUCTION
Node clustering is a fundamental task in graph mining [30, 41,

47, 65], and finds important real-world applications, e.g., commu-

nity detection in social networks [12], functional cartography of

metabolic networks [16], and protein grouping in biological net-

works [53]. Traditionally, node clustering is done based on the

graph topology, i.e., by grouping together well-connected nodes.

This approach, however, is often insufficient to obtain high-quality

clusters [13, 24], especially when the graph comes with attributes

associated to nodes. In such attributed graphs, well-connected nodes
tend to share similar attributes; meanwhile, nodes with similar at-

tributes are also likely to be well-connected, as observed in [28, 29].

Therefore, to obtain high-quality node clustering, it is important to

consider both graph topology and node attributes. The resulting

attributed graph clustering has use cases such as gene clustering

in biological networks [19], group-oriented marketing in commu-

nication networks [58], service/app recommendation, and online

advertising in social networks [25, 32].

This paper focuses on 𝑘-attributed graph clustering (𝑘-AGC),

which takes as input an attributed graph 𝐺 and a parameter 𝑘 ,

and aims to partition𝐺 into 𝑘 disjoint node clusters𝐶1,𝐶2, · · · ,𝐶𝑘 ,
such that the nodes within the same cluster 𝐶𝑖 are not only well-

connected to each other, but also share similar attribute values,

whereas the nodes in different clusters are distant to each other

and share less attributes. It is highly challenging to devise a 𝑘-AGC

algorithm that yields high-quality clusters, especially on massive

graphs, e.g., with millions of nodes and billions of attribute values.

Most existing solutions (e.g., [2, 7, 10, 31, 35, 38, 39, 45, 48, 56–58, 66,
68, 72, 73]) fail to scale to such large graphs, since they either incur

prohibitive computational overhead, or produce clustering results

with compromised quality. For instance, a common methodology

[7, 10, 38, 72] relies onmaterializing the attribute similarity between

every pair of nodes in the input graph 𝐺 , and, thus, requires 𝑂 (𝑛2)
space for 𝑛 nodes, which is infeasible for a graph with numerous

nodes. Methods based on probabilistic models (e.g., [22, 42, 58, 66,
67]) generally require immense costs on large graphs to estimate

the likelihood parameters in their respective optimization programs.

Among the faster solutions, some (e.g., [7, 35, 39, 45, 48]) reduce
the problem to non-attributed graph clustering by re-weighting

each edge (𝑢, 𝑣) in 𝐺 based on the attribute similarity between

nodes𝑢 and 𝑣 . This approach, however, ignores attribute similarities

between nodes that are not directly connected, and, consequently,

suffers from severe result quality degradation. Finally, 𝑘-AGC could

be done by first applying attributed network embedding to the input

graph (e.g., [14, 18, 23, 33, 36, 43, 52, 59–61, 64, 70, 71]) to obtain

1

TheWebConf ’21, April 19–23, 2021, Ljubljana, Slovenia Renchi Yang, Jieming Shi, Yin Yang, Keke Huang, Shiqi Zhang, and Xiaokui Xiao

an embedding vector for each node, and subsequently feeding the

resulting embeddings to a non-graph method such as 𝑘-Means
clustering [20, 44]. This two-stage pipeline leads to sub-optimal

result quality, however, since the node embedding methods do not

specifically target for graph clustering, as demonstrated in our

experiments.

Facing the challenge of 𝑘-AGC on massive attributed graphs,

we propose ACMin (short for Attributed multi-hop Conductance

Minimization), a novel solution that seamlessly incorporates both

graph topology and node attributes to identify high-quality clus-

ters, while being highly scalable and efficient on massive graphs

with numerous nodes, edges and attributes. Specifically, ACMin
computes 𝑘-AGC by solving an optimization problem, in which

the main objective is formulated based on a novel concept called

average attributed multi-hop conductance, which is a non-trivial

extension to conductance [6, 65], a classic measure of node cluster

coherence. The main idea is to map both node relationships (i.e.,
connections via edges) and similarities (i.e., common attributes) to

motions of a random walker. Then, we show that the correspond-

ing concept of conductance in our setting, i.e., attributed multi-hop

conductance, is equivalent to the probability that a random walker

starting from a node in a cluster (say, 𝐶) terminates at any node

outside the cluster𝐶 . Accordingly, our goal is to identify a node par-

titioning scheme that minimizes the average attributed multi-hop

conductance among all 𝑘 clusters in the result.

Finding the exact solution to the above optimization problem

turns out to be infeasible for large graphs, as we prove its NP-

hardness. Hence, ACMin tackles the problem via an approximate

solution with space and time costs linear to the size of the input

graph. In particular, there are three key techniques in the ACMin
algorithm. First, instead of actually sampling randomwalks, ACMin
converts the optimization objective into its equivalent matrix form,

and iteratively refines a solution via efficient matrix operations,

i.e., orthogonal iterations [46]. Second, the ACMin solver applies

an alternative optimization approach and randomized SVD [17] to

efficiently generate and refine clustering results. Third, ACMin in-

cludes an effective greedy initialization technique that significantly

speeds up the convergence of the iterative process in practice.

We formally analyze the asymptotic time and space complexities

of ACMin, and evaluate its performance thoroughly by comparing

against 11 existing solutions on 6 real datasets. The quality of a

clusteringmethod’s outputs is evaluated by both (i) comparing them

with ground truth labels, and (ii) measuring their attributed multi-

hop conductance, which turns out to agree with (i) on all datasets in

the experiments. The evaluation results demonstrate that ACMin
consistently outperforms its competitors in terms of clustering

quality, at a fraction of their costs. In particular, on the Flickr dataset,
the performance gap between ACMin and the best competitor is as

large as 28.6 percentage points, measured as accuracy with respect

to ground truth. On the Microsoft Academic Knowledge Graph

(MAG) dataset with 265.2 million edges and 1.1 billion attribute

values, ACMin terminates in 1.68 hours for a 5-AGC task, while

none of the 11 competitors finish within 3 days.

Table 1: Frequently used notations.

Notation Description
𝐺=(𝑉 , 𝐸𝑉 , 𝑅, 𝐸𝑅) A graph𝐺 with node set𝑉 , edge set𝐸𝑉 , attribute

set 𝑅, and node-attribute association set 𝐸𝑅 .

𝑛,𝑑 The number of nodes (i.e., |𝑉 |) and the number

of attributes (i.e., |𝑅 |) in𝐺 , respectively.

𝑘 The number of clusters.

A,D,R The adjacency, out-degree and attribute matrices

of𝐺 .

P𝑉 , P𝑅 The topological transition and attributed transi-

tion matrices of𝐺 , respectively.

𝛼, 𝛽 Stopping and attributed branching probabilities.

S The attributed random walk probability matrix

(see Eq. (2)).

F The top-𝑘 eigenvectors of S.
Y,Ψ(Y) A 𝑘 × 𝑛 node-cluster indicator (i.e., NCI) and the

average attributed multi-hop conductance (i.e.,
AAMC) of Y (see Eq. (8)).

The rest of this paper is organized as follows. Section 2 presents

our formulation of the 𝑘-AGC problem, based on two novel con-

cepts: attributed random walks and attributed multi-hop conduc-

tance. Section 3 overviews the proposed solution ACMin and pro-

vides the intuitions of the algorithm. Section 4 describes the com-

plete ACMin algorithm and analyzes its asymptotic complexity.

Section 5 contains an extensive set of experimental evaluations.

Section 6 reviews related work, and Section 7 concludes the paper

with future directions.

2 PROBLEM FORMULATION
Section 2.1 provides necessary background and defines common

notations. Section 2.2 describes a random walk model that incorpo-

rates both topological proximity and attribute similarity informa-

tion. Section 2.3 defines the novel concept of attributed multi-hop

conductance, which forms the basis of the objective function in our

𝑘-AGC problem formulation, presented in Section 2.4.

2.1 Preliminaries
Let 𝐺 = (𝑉 , 𝐸𝑉 , 𝑅, 𝐸𝑅) be an attributed graph consisting of a node

set𝑉 with cardinality 𝑛, a set of edges 𝐸𝑉 of size𝑚, each connecting

two nodes in 𝑉 , a set of attributes1 𝑅 with cardinality 𝑑 , and a set

of node-attribute associations 𝐸𝑅 , where each element is a tuple

(𝑣𝑖 , 𝑟 𝑗 ,𝑤𝑖, 𝑗) signifying that node 𝑣𝑖 ∈ 𝑉 is directly associated with

attribute 𝑟 𝑗 ∈ 𝑅 with a weight 𝑤𝑖, 𝑗 . Without loss of generality,

we assume that each edge (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸𝑉 is directed; an undirected

edge (𝑣𝑖 , 𝑣 𝑗) is simply converted to a pair of directed edges with

opposing directions (𝑣𝑖 , 𝑣 𝑗) and (𝑣 𝑗 , 𝑣𝑖). A high-level definition of

the 𝑘-AGC problem is as follows.

Definition 2.1 (𝑘-Attributed Graph Clustering (𝑘-AGC) [72]). Given
an attributed graph𝐺 and the number 𝑘 of clusters, 𝑘-AGC aims to

partition the node set 𝑉 of 𝐺 into disjoint subsets: 𝐶1,𝐶2, · · · ,𝐶𝑘 ,
such that (i) nodes within the same cluster𝐶𝑖 are close to each other,

while nodes between any two clusters 𝐶𝑖 ,𝐶 𝑗 are distant from each

1
Following common practice in the literature [58, 64], we assume that the attributes

have already been pre-processed, e.g., categorical attributes such as marital status are

one-hot encoded into binary ones.

2

Effective and Scalable Clustering on Massive Attributed Graphs TheWebConf ’21, April 19–23, 2021, Ljubljana, Slovenia

v2v2

v1v1

v3v3

v4v4

v5v5

v6v6

v7v7

r1r1

r2r2

r3r3

v2

v1

v3

v4

v5

v6

v7

r1

r2

r3

(a) Clusters𝐶1,𝐶2

v2v2

v1v1

v3v3

v4v4

v5v5

v6v6

v7v7

r1r1

r2r2

r3r3

v2

v1

v3

v4

v5

v6

v7

r1

r2

r3

(b) Clusters𝐶′
1
,𝐶′

2

Figure 1: Example attributed graph and clustering schemes.

other; and (ii) nodes within the same cluster𝐶𝑖 have homogeneous

attribute values, while the nodes in different clusters may have

diverse attribute values.

Note that the above definition does not include a concrete opti-

mization objective that quantifies node proximity and attribute ho-

mogeneity. As explained in Sections 2.2-2.4, the design of effective

cluster quality measures is non-trivial, and is a main contribution

of this paper. The problem formulation is completed later in Section

2.4 with a novel objective function.

Regarding notations, we denote matrices in bold uppercase, e.g.,
M. We useM[𝑖] to denote the 𝑖-th row vector ofM, andM[:, 𝑗] to
denote the 𝑗-th column vector of M. In addition, we useM[𝑖, 𝑗] to
denote the element at the 𝑖-th row and 𝑗-th column of M. Given an

index set I, we letM[I] (resp.M[:,I]) be the matrix block ofM
that contains the row (resp. column) vectors of the indices in I.

LetA be the adjacencymatrix of the input graph𝐺 , i.e.,A[𝑣𝑖 , 𝑣 𝑗] =
1 if (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸𝑉 , otherwise A[𝑣𝑖 , 𝑣 𝑗] = 0. Let D be the diagonal

out-degree matrix of 𝐺 , i.e., D[𝑣𝑖 , 𝑣𝑖] =
∑

𝑣𝑗 ∈𝑉 A[𝑣𝑖 , 𝑣 𝑗]. We define

the topological transition matrix of𝐺 as P𝑉 = D−1A. Furthermore,

we define an attribute matrix R ∈ R𝑛×𝑑
, such that R[𝑣𝑖 , 𝑟 𝑗] = 𝑤𝑖, 𝑗

is the weight associated with the entry (𝑣𝑖 , 𝑟 𝑗 ,𝑤𝑖 𝑗) ∈ 𝐸𝑅 . We refer

to R[𝑣𝑖] as node 𝑣𝑖 ’s attribute vector. Also, let 𝑑𝑜𝑢𝑡 (𝑣𝑖) and 𝑑𝑖𝑛 (𝑣𝑖)
represent the out-degree and in-degree of node 𝑣𝑖 in𝐺 , respectively.

Table 1 lists the frequently used notations throughout the paper.

2.2 Attributed RandomWalk Model
Random walk is an effective model for capturing multi-hop rela-

tionships between nodes in a graph [34]. Common definitions of

random walk, e.g., random walk with restart (RWR) [27, 50], con-

sider only graph topology but not node attributes. Hence, we devise

a new attributed random walk model that seamlessly integrates

topological proximity and attribute similarity between nodes in a

coherent framework, which plays a key role in our formulation of

the 𝑘-AGC problem, elaborated later.

Given an attributed graph𝐺 , we first define the attributed transi-
tion probability and topological transition probability between a pair

of nodes 𝑣𝑖 and 𝑣 𝑗 in 𝐺 . We say that 𝑣𝑖 and 𝑣 𝑗 are connected via

attribute 𝑟𝑥 , iff. 𝑣𝑖 and 𝑣 𝑗 have a common attribute 𝑟𝑥 . For example,

in Figure 1, nodes 𝑣1 and 𝑣4 are connected via three attributes 𝑟1−𝑟3
(shown in blue dashed lines). The attributed transition probability

from 𝑣𝑖 to 𝑣 𝑗 via 𝑟𝑥 is defined as

R[𝑣𝑖 ,𝑟𝑥] ·R[𝑣𝑗 ,𝑟𝑥]∑
𝑣𝑙 ∈𝑉

∑
𝑟𝑦∈𝑅 R[𝑣𝑖 ,𝑟𝑦] ·R[𝑣𝑙 ,𝑟𝑦] , which

corresponds to the motion of the random walker that hops from 𝑣𝑖
to 𝑣 𝑗 through a “bridge” 𝑟𝑥 . Accordingly, we define the attributed

transition probability matrix P𝑅 of 𝐺 as:

P𝑅 [𝑣𝑖 , 𝑣 𝑗] =
R[𝑣𝑖] ·R[𝑣𝑗]⊤∑
𝑣𝑙 ∈𝑉 R[𝑣𝑖] ·R[𝑣𝑙]⊤ . (1)

Intuitively, P𝑅 [𝑣𝑖 , 𝑣 𝑗] models the attributed transition probability

from 𝑣𝑖 to 𝑣 𝑗 via any attribute in 𝑅.

Meanwhile, following conventional random walk definitions, for

any two nodes 𝑣𝑖 and 𝑣 𝑗 that are directly connected by an edge in𝐺 ,

i.e., (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸𝑉 , the topological transition probability P𝑉 [𝑣𝑖 , 𝑣 𝑗]
from 𝑣𝑖 to 𝑣 𝑗 is

1

𝑑𝑜𝑢𝑡 (𝑣𝑖) , where 𝑑𝑜𝑢𝑡 (𝑣𝑖) is the out-degree of node 𝑣𝑖 .
The topological transition matrix P𝑉 can then be obtained by P𝑉 =

D−1A, where D and A are the node degree and adjacency matrices

of𝐺 , respectively. Based on the above concepts, we formally define

attributed random walk as follows.

Definition 2.2 (Attributed Random Walk). Given an attributed

graph𝐺 , a stopping probability 𝛼 ∈ (0, 1), and an attributed branch-

ing probability 𝛽 ∈ (0, 1), an attributed random walk starting from

node 𝑣𝑖 in 𝐺 performs one of the following actions at each step:

(1) with probability 𝛼 , stop at the current node (denoted as 𝑣 𝑗),

(2) with probability 1 − 𝛼 , jump to another node 𝑣𝑙 as follows:

(a) (attributed transition) with probability 𝛽 , jump to another

node 𝑣𝑙 via any attribute with probability P𝑅 [𝑣 𝑗 , 𝑣𝑙],
(b) (topological transition) with probability 1 − 𝛽 , jump to an

out-neighbor 𝑣𝑙 of 𝑣 𝑗 with probability P𝑉 [𝑣 𝑗 , 𝑣𝑙].

Based on Definition 2.2, the following lemma
2
shows how to

directly compute the probability S[𝑣𝑖 , 𝑣 𝑗] that an attributed random

walk starting from node 𝑣𝑖 stops at node 𝑣 𝑗 .

Lemma 2.3. Given an attributed graph 𝐺 , the probability that an
attributed random walk starting from node 𝑣𝑖 stops at node 𝑣 𝑗 is

S[𝑣𝑖 , 𝑣 𝑗] = 𝛼
∑∞
ℓ=0 (1 − 𝛼)ℓ · ((1 − 𝛽) · P𝑉 + 𝛽 · P𝑅)ℓ [𝑣𝑖 , 𝑣 𝑗] . (2)

Note that computing S directly using Eq. (2) is inefficient, which

involves sampling numerous attributed random walks. Instead, the

proposed solution ACMin, presented later, computes the probabil-

ities in S based on an alternative matrix representation, without

simulating any attributed random walk.

2.3 Attributed Multi-Hop Conductance
Conductance is widely used to evaluate the quality of a node cluster

in a graph [6, 65]. A smaller conductance indicates a more coherent

cluster, and vice versa. Specifically, given a cluster 𝐶 of graph 𝐺 ,

the conductance of 𝐶 , denoted as Φ̂(𝐶), is defined as follows.

Φ̂(𝐶) = |cut(𝐶) |
min{vol(𝐶),vol(𝑉 \𝐶) } , (3)

where vol(𝐶) = ∑
𝑣𝑖 ∈𝐶 𝑑𝑜𝑢𝑡 (𝑣𝑖), i.e., the sum of the out-degrees

of all nodes in 𝐶 , and cut(𝐶) = {(𝑣𝑖 , 𝑣 𝑗) | 𝑣𝑖 ∈ 𝐶, 𝑣 𝑗 ∈ 𝑉 \𝐶}, i.e.,
the set of outgoing edges with an endpoint in 𝐶 and the other

in 𝑉 \𝐶 . Intuitively, Φ̂(𝐶) is smaller when 𝐶 has fewer outgoing

edges linking to the nodes outside the cluster (i.e., lower inter-
cluster connectivity), and more edges with both endpoints within

𝐶 (higher intra-cluster connectivity).

In our setting, the classic definition of conductance Φ̂(𝐶) is in-
adequate, since it captures neither attribute information nor multi-

hop relationships between nodes. Figure 1 illustrates an example in

which Φ̂(𝐶) leads to counter-intuitive cluster quality measurements.

2
All proofs appear in Appendix A

3

TheWebConf ’21, April 19–23, 2021, Ljubljana, Slovenia Renchi Yang, Jieming Shi, Yin Yang, Keke Huang, Shiqi Zhang, and Xiaokui Xiao

The example contains nodes 𝑣1-𝑣7 and attributes 𝑟1-𝑟3. Suppose that

we aim to partition𝐺 into two clusters. As shown in Figure 1b, node

𝑣4 is mutually connected to nodes 𝑣2 and 𝑣3, and also shares many

attributes (i.e., 𝑟1, 𝑟2, and 𝑟3) and neighbors (i.e., 𝑣2 and 𝑣3) with

node 𝑣1; in contrast, among nodes 𝑣5-𝑣7, 𝑣4 is only mutually con-

nected to 𝑣6, and share no common attributes with them. Imagine

that this is in a social media setting where each node represents

a user, and each edge indicates a follow relationship; then, 𝑣4 is

clearly closer to nodes 𝑣1-𝑣3 than to nodes 𝑣5-𝑣7, due to its stronger

connections and shared attributes to the former group. However,

the conductance definition in Eq. (3) leads to the counter-intuitive

conclusion that favors the clustering scheme 𝐶1 = {𝑣1, 𝑣2, 𝑣3} and
𝐶2 = {𝑣4, 𝑣5, 𝑣6, 𝑣7} in Figure 1a over 𝐶 ′

1
and 𝐶 ′

2
in Figure 1b, since

the conductance Φ̂(𝐶1) = Φ̂(𝐶2) = 1

3
≤ Φ̂(𝐶 ′

1
) = Φ̂(𝐶 ′

2
) = 2

5
.

To address the above issue, we propose a new measure of cluster

quality dubbed attributed multi-hop conductance, which can be

viewed as an adaptation of conductance to the problem setting

of 𝑘-AGC. Specifically, given a cluster 𝐶 of an attributed graph 𝐺 ,

suppose that we perform 𝑛𝑟 attributed random walks from each

node 𝑣𝑖 in𝐶 . Let𝑤 (𝑣𝑖 , 𝑣 𝑗) be the number of walks from 𝑣𝑖 stopping

at 𝑣 𝑗 . Then, we can use the following quantity instead of Eq. (3) as

a measure of cluster coherence:

E

[∑
𝑣𝑖 ∈𝐶,𝑣𝑗 ∈𝑉 \𝐶 𝑤 (𝑣𝑖 , 𝑟 𝑗)

𝑛𝑟 · |𝐶 |

]
=

∑
𝑣𝑖 ∈𝐶,𝑣𝑗 ∈𝑉 \𝐶 E[𝑤 (𝑣𝑖 ,𝑣𝑗)𝑛𝑟

]
|𝐶 | .

Intuitively, the above value quantifies the expected portion of the at-

tributed random walks escaping from𝐶 , i.e., stopping at any outside
node 𝑣 𝑗 ∈ 𝑉 \𝐶 . Hence, the smaller the number of escaped walks,

the higher the cluster coherence. Further, observe that E[𝑤 (𝑣𝑖 ,𝑣𝑗)𝑛𝑟
]

corresponds to the probability that an attributed random walk start-

ing from 𝑣𝑖 terminates at 𝑣 𝑗 , i.e., S[𝑣𝑖 , 𝑣 𝑗] in Eq. (2). Accordingly,

we arrive at the following definition of attributed multi-hop con-

ductance Φ(𝐶).

Definition 2.4 (Attributed Multi-Hop Conductance). Given a clus-

ter𝐶 of an attributed graph𝐺 , the attributedmulti-hop conductance

Φ(𝐶) of the cluster 𝐶 is defined as

Φ(𝐶) = ∑
𝑣𝑖 ∈𝐶,𝑣𝑗 ∈𝑉 \𝐶

S[𝑣𝑖 ,𝑣𝑗]
|𝐶 | . (4)

2.4 Objective Function
Given an input attributed graph𝐺 , we aim to partition all nodes into

𝑘 disjoint clusters 𝐶1,𝐶2, · · · ,𝐶𝑘 , such that their average attributed
multi-hop conductance (AAMC) 𝜙 of the 𝑘 clusters is minimized, as

follows.

𝜙∗ = min𝐶1,𝐶2, · · · ,𝐶𝑘

∑𝑘
𝑖=1 Φ(𝐶𝑖)

𝑘
. (5)

The above objective, in combination with Definition 2.1, com-

pletes our formuation of the 𝑘-AGC problem. As an example, in

Figure 1, let 𝛼 = 0.2, 𝛽 = 0.5. Then, we have Φ(𝐶1) = 0.121,Φ(𝐶2) =
0.125 for the clusters𝐶1,𝐶2 in Figure 1a, andΦ(𝐶 ′

1
) = 0.025,Φ(𝐶 ′

2
) =

0.185 for the clusters𝐶 ′
1
,𝐶 ′

2
in Figure 1b. The AAMC values of these

two clustering results are
Φ(𝐶1)+Φ(𝐶2)

2
= 0.123 >

Φ(𝐶′
1
)+Φ(𝐶′

2
)

2
=

0.105, which indicate that𝐶 ′
1
,𝐶 ′

2
are a better clustering of𝐺 , which

agrees with our intuition explained in Section 2.3.

3 SOLUTION OVERVIEW
This section provides a high-level overview of the proposed solution

ACMin for 𝑘-AGC computation, and explains the intuitions behind

the algorithm design. The complete ACMin method is elaborated

later in Section 4.

First, we transform the optimization objective in Eq. (5) to an

equivalent form that is easier to analyze. For this purpose, we

introduce the following binary node-cluster indicator (NCI) Y ∈
1𝑘×𝑛 to represent a clustering result:

Y[𝐶𝑖 , 𝑣 𝑗] =
{
1 𝑣 𝑗 ∈ 𝐶𝑖 ,
0 𝑣 𝑗 ∈ 𝑉 \𝐶𝑖 ,

(6)

where𝐶𝑖 is the 𝑖-th cluster and 𝑣 𝑗 is the 𝑗-th node in the node set𝑉

of the input graph𝐺 . Based on NCI Y, the following lemma presents

an equivalent form of the AAMC objective function in Eq. (5).

Lemma 3.1. Given a clustering result 𝐶1,𝐶2, · · · ,𝐶𝑘 , represented
by NCI Y, the AAMC of 𝐶1,𝐶2, · · · ,𝐶𝑘 can be obtained by:∑𝑘

𝑖=1 Φ(𝐶𝑖)
𝑘

= 2

𝑘
· trace(((YY⊤)−

1

2 Y) · (I − S) · ((YY⊤)−
1

2 Y)⊤) (7)

Then, our optimization objective for 𝑘-AMC is transformed to:

𝜙∗ = min

Y∈1𝑘×𝑛
Ψ(Y) (8)

where Ψ(Y) = 2

𝑘
· trace(((YY⊤)−

1

2 Y) · (I − S) · ((YY⊤)−
1

2 Y)⊤)
Note that Eq. (8) is equivalent to Eq. (5), and yet the former

is more friendly to analysis. In particular, we have the following

negative result.

Lemma 3.2. The optimization problem of finding the optimal val-
ues of Y from the objective function in Eq. (8) is NP-hard. □

Accordingly, to devise a solution for 𝑘-AGC on massive graphs,

we focus on approximate techniques for optimizing our objective.

Observe that the NP-hardness of our objective function in Eq. (8)

is due to the requirement that elements of the NCI are binary, i.e.,
Y ∈ 1𝑘×𝑛 . Thus, we apply a common trick that relaxes NCI ele-

ments from binary to fractional, i.e.,Y ∈ R𝑘×𝑛
. The following lemma

shows a sufficient condition to find the optimal values of fractional

NCI Y: when the row vectors of (YY⊤)−
1

2 Y are the top-𝑘 eigen-

vectors of matrix S (defined in Lemma 2.3), i.e., the 𝑘 eigenvectors

corresponding to the 𝑘 largest eigenvalues of S.

Lemma 3.3. Assume that we relax the requirement Y ∈ 1𝑘×𝑛 to
Y ∈ R𝑘×𝑛 . Let F ∈ R𝑘×𝑛 denote the matrix consisting of the top-
𝑘 eigenvectors of S. Then, the optimal value of Y for the objective
minY∈R𝑘×𝑛 Ψ(Y) is obtained when (YY⊤)−

1

2 Y = F, which leads to
a value of Ψ(Y) no larger than the solution of the original optimal
objective 𝜙∗ in Eq. (8). □

The optimal value of fractional Y, however, does not directly
correspond to a clustering solution, which requires the NCI to be

binary. The following lemma points to a way to obtain a good

approximation of the optimal binary Y ∈ 1𝑘×𝑛 .

Lemma 3.4. Given the top-𝑘 eigenvectors F of S, if we obtain a
binary NCI Y that satisfies

min ∥XF − (YY⊤)−
1

2 Y∥2𝐹 s.t. Y ∈ 1𝑘×𝑛, X⊤X = I, (9)

then Ψ(Y) → 𝜙∗ in Eq. (8). □

4

Effective and Scalable Clustering on Massive Attributed Graphs TheWebConf ’21, April 19–23, 2021, Ljubljana, Slovenia

Algorithm 1: ACMin
Input:𝐺,𝑘, 𝛼, 𝛽 .

Output: Y.
1 Compute R̂ by Eq. (10);

2 Y0 ← InitNCI(P𝑉 , R̂,R, 𝛼, 𝛽) ;
3 F0 ← (Y0Y⊤

0
)− 1

2 Y0;

4 Y← Y0;

5 𝜙 ← AppoxAAMC(P𝑉 , R̂,R, 𝛼, 𝛽,Y0) ;
6 for ℓ ← 1 to 𝑡𝑒 do
7 Zℓ ← (1 − 𝛽) · P𝑉 F⊤ℓ−1 + 𝛽 · R̂(R⊤F⊤ℓ−1) ;
8 Fℓ ← QR(Zℓ) ;
9 if Fℓ = Fℓ−1 then break ;

10 Yℓ ← GenNCI(Fℓ) ;
11 𝜙ℓ ← AppoxAAMC(P𝑉 , R̂,R, 𝛼, 𝛽,Yℓ) ;
12 if 𝜙ℓ < 𝜙 then 𝜙 ← 𝜙ℓ , Y← Yℓ ;

13 return Y;

Based on Lemmata 3.3 and 3.4, to approximate the optimal binary

NCI Y, we can first compute the top-𝑘 eigenvectors F of S, and
then solve for the best NCI Y that optimizes Eq. (9). The proposed

algorithm ACMin follows this two-step approach.

However, there remain two major challenges in realizing the

above idea:

• How to compute F for large graphs. Note that it is prohibitively ex-
pensive to compute F directly by performing eigen-deomposition

on a materialized matrix S (defined in Eq. (2)), which would con-

sume Ω(𝑛2) space and Ω(𝑛2𝑘) time.

• Given F, how to efficiently compute Y ∈ 1𝑘×𝑛 based on Eq. (9),

which in itself is a non-trivial optimization problem.

To address the above challenges, the proposed method ACMin
contains three key techniques. First, to compute the top-𝑘 eigen-

vectors F of S, ACMin employs a scalable, iterative process based

on orthogonal iterations [46], which does not need to materialize S.
Second, to find the best NCI Y, ACMin applies an alternative opti-
mization approach and randomized SVD [17] to efficiently optimize

Eq. (9). Third, to acclerate the above iterative processes, ACMin
includes an effective greedy algorithm to compute a high-quality

initial value of Y, which significantly speeds up convergence in

practice. Overall, ACMin only requires space and time linear to the

size of the input graph 𝐺 . The next section presents the detailed

ACMin algorithm and complexity analysis.

4 DETAILED ACMin ALGORITHM
This section presents the detailed ACMin algorithm, shown in Al-

gorithm 1. In the following, Sections 4.1-4.3 detail the three most

important components of ACMin: the computation of top-𝑘 eigen-

vectors F, binary NCI Y, and a greedy initialization of Y, respec-
tively. Section 4.4 summarizes the complete ACMin algorithm and

analyzes its complexity.

4.1 Computing Top-𝑘 Eigenvectors F
Recall from Section 3 that ACMin follows a two-step strategy that

first computes F, the top-𝑘 eigenvectors of S (Eq. (2)). Since materi-

alizing S is infeasible on large graphs, this subsection presents our

iterative procedure for computing F without materializing S, which
corresponds to Lines 6-9 of Algorithm 1.

First of all, the following lemma reduces the problem of comput-

ing F to computing the top-𝑘 eigenvectors of (1 − 𝛽) · P𝑉 + 𝛽 · P𝑅 .

Lemma 4.1. Let F be the top-𝑘 eigenvectors of (1− 𝛽) · P𝑉 + 𝛽 · P𝑅 .
Then, F is also the top-𝑘 eigenvectors of S. □

Computing the exact top-𝑘 eigenvectors of (1 − 𝛽) · P𝑉 + 𝛽 · P𝑅
is still rather challenging, however, since materializing P𝑅 also re-

quires Ω(𝑛2) space. To tackle this issue, ACMin applies orthogonal
iterations [46], as follows. First, ACMin computes a normalized

attribute vector R̂[𝑣𝑖] for each node 𝑣𝑖 in the graph using the fol-

lowing equation, leading to matrix R̂ (Line 1 in Algorithm 1).

R̂[𝑣𝑖] = R[𝑣𝑖]
R[𝑣𝑖] ·r⊤ ∀𝑣𝑖 ∈ 𝑉 ,where r =

∑
𝑣𝑗 ∈𝑉 R[𝑣 𝑗] . (10)

Comparing above equation with Eq. (1), it follows that P𝑅 = R̂R⊤.
Hence, (1 − 𝛽) · P𝑉 + 𝛽 · P𝑅 in Lemma 4.1 can be transformed to

(1 − 𝛽) · P𝑉 + 𝛽 · R̂R⊤, eliminating the need to materialize P𝑅 .
Next, suppose that we are currently at the start of the ℓ-th it-

eration (Line 6 of Algorithm 1) with Fℓ−1 obtained in previous

iteration. Note that in the first iteration, F0 is computed from an

initial value Y0 of Y, elaborated in Section 4.3. ACMin computes

Zℓ = ((1−𝛽) ·P𝑉 +𝛽 · R̂R⊤)F⊤ℓ−1 = (1−𝛽) ·P𝑉 F
⊤
ℓ−1+𝛽 · R̂ · (R

⊤F⊤
ℓ−1)

(Line 7 of the algorithm), which can be done in𝑂 (𝑘 · (|𝐸𝑉 | + |𝐸𝑅 |))
time. Then, ACMin employs QR decomposition [9] (Line 8) to de-

compose Zℓ into two matrices: Fℓ and 𝚲ℓ , such that Zℓ = F⊤
ℓ
· 𝚲ℓ ,

where 𝚲ℓ is an upper-triangular matrix, and Fℓ is orthogonal (i.e.,
FℓF⊤ℓ = I). Clearly, the QR decomposition step can be done in

𝑂 (𝑛𝑘2) time, leading to𝑂 (𝑘 · (|𝐸𝑉 | + |𝐸𝑅 |) +𝑛𝑘2) total time for one

iteration in the computation of F.
Suppose that Fℓ converges in iteration ℓ = 𝑡𝑐 , i.e., F𝑡𝑐 is the same

as F𝑡𝑐−1 (Line 9). Then, we have Zℓ = ((1 − 𝛽) · P𝑉 + 𝛽 · P𝑅)F⊤𝑡𝑐 =

F⊤𝑡𝑐 · 𝚲𝑡𝑐 . Considering that 𝚲ℓ is an upper-triangular matrix, and Fℓ
is orthogonal (i.e., FℓF⊤ℓ = I), according to [46], we conclude that

F𝑡𝑐 is the top-𝑘 eigenvectors of (1− 𝛽) ·P𝑉 + 𝛽 ·P𝑅 and the diagonal

elements of 𝚲𝑡𝑐 are the top-𝑘 eigenvalues. According to Lemma 4.1,

the row vectors of F𝑡𝑐 are also the top-𝑘 eigenvectors of S.
Note that throughout the process for computing F, there is no

materialization of either S or P𝑅 , which avoids the corresponding

quadratic space requirement. Meanwhile, with a constant 𝑘 , each

iteration takes time linear to the size of the input graph 𝐺 , which

is far more scalable than decomposing S directly. In practice, the

number of required iterations can be significantly reduced through

a good initialization, detailed later in Section 4.3.

4.2 Computing Binary NCI Y
As described in Section 3, after obtaining the top-𝑘 eigenvectors

F of S, ACMin proceeds to compute the binary NCI Y by solving

the optimization problem in Eq. (9). In Algorithm 1, this is done in

Lines 10-12. Note that in ACMin, the computation of Y is performed

once in every iteration for computing F, rather than only once after

the final value of F is obtained. This is because our algorithm is

approximate, and, thus, the final value of F does not necessarily

lead to the best clustering quality, measured by AAMC (Section

2.4). Hence, ACMin computes Yℓ and the corresponding AAMC

5

TheWebConf ’21, April 19–23, 2021, Ljubljana, Slovenia Renchi Yang, Jieming Shi, Yin Yang, Keke Huang, Shiqi Zhang, and Xiaokui Xiao

Algorithm 2: GenNCI
Input: F.
Output: Y.

1 X′ ← I,X← I;
2 for ℓ ← 1 to 𝑡𝑚 do
3 for 𝑖 ← 1 to 𝑘 do Compute 𝛾𝑖 by Eq. (15) ;

4 for 𝑣𝑗 ∈ 𝑉 do
5 Pick 𝑐𝑖 by Eq. (14);

6 Y[:, 𝑣𝑗] ← 0, Y[𝑐𝑖 , 𝑣𝑗] ← 1;

7 U, 𝚺,V← SVD((YY⊤)− 1

2 YF⊤) ;
8 X′ ← X, X← U · V⊤;
9 if X = X′ then break;

10 return Y;

𝜙ℓ for each iteration ℓ , and udpate the current best result Y and 𝜙

whenever a better result is found (Lines 11-12 in Algorithm 1).

Next we clarify the GenNCI function, shown in in Algorithm 2,

which computes the binary NCI Yℓ ∈ 1𝑘×𝑛 with Fℓ in the current

iteration ℓ . First, based on properties of matrix trace, we transform

the optimization objective in Eq. (9), as follows.

∥XF − (YY⊤)−
1

2 Y∥2𝐹 = 2𝑘 − 2 · trace((YY⊤)−
1

2 YF⊤X⊤). (11)

GenNCI applies an alternative optimization approach to minimize

Eq. (11). Specifically, the algorithm updates two variables, X and Y
in an alternating fashion, each time fixing one of them and updating

the other, according to the following rules.

Updating Y with X fixed. Given F, according to Eq. (11), with X
fixed, the function to optimize becomes:

max

Y∈1𝐾×𝑛
trace((YY⊤)−

1

2 YF⊤X⊤) (12)

LetM = F⊤X⊤. Eq. (12) is equivalent to

maxY∈1𝑘×𝑛
∑

𝑣𝑗 ∈𝑉
∑𝑘
𝑖=1

(
Y[𝑐𝑖 , 𝑣 𝑗] ·

M[𝑣𝑗 ,𝑐𝑖]√∑
𝑣𝑙 ∈𝑉 Y[𝑐𝑖 ,𝑣𝑙]

)
. (13)

Since Y ∈ 1𝑘×𝑛 , for each column Y[:, 𝑣 𝑗] (𝑣 𝑗 ∈ 𝑉), we update the
entry at 𝑐𝑖 of Y[:, 𝑣 𝑗] (i.e., Y[𝑐𝑖 , 𝑣 𝑗]) to 1, and 0 everywhere else,

where 𝑐𝑖 is picked greedily as follows:

𝑐𝑖 = arg max

1≤𝑐𝑙 ≤𝑘

[
(1−Y[𝑐𝑙 ,𝑣𝑗]) ·M[𝑣𝑗 ,𝑐𝑙]√

𝛾2

𝑙
+1

+ Y[𝑐𝑙 ,𝑣𝑗] ·M[𝑣𝑗 ,𝑐𝑙]
𝛾𝑙

]
, (14)

where 𝛾𝑙 =
√∑

𝑣𝑧 ∈𝑉 Y[𝑐𝑙 , 𝑣𝑧], (15)

meaning that we always update each column Y[:, 𝑣 𝑗] (𝑣 𝑗 ∈ 𝑉) such

that the objective function in Eq. (12) is maximized. Since both

M = F⊤X⊤ and 𝛾𝑙 can be precomputed at the beginning of each

iteration, which takes 𝑂 (𝑛𝑘2) time, it takes 𝑂 (𝑛𝑘) time to update

the whole Y in each iteration.

Updating X with Y fixed. Given F, according to Eq. (11), with Y
fixed, the function to optimize becomes:

max

X⊤X=I
trace((YY⊤)−

1

2 YF⊤X⊤) (16)

The following lemma shows that the optimal X in Eq. (16) can

be obtained via singular value decomposition (SVD) of matrix

(YY⊤)−
1

2 YF⊤.

Algorithm 3: InitNCI
Input: P𝑉 , 𝛼, 𝛽 .
Output: Y0.

1 Y0 ← 0,𝑉𝜏 ← ∅;
2 𝑉 ′𝜏 ← {𝑣𝜏1 , 𝑣𝜏2 , · · · , 𝑣𝜏5𝑘 } where 𝑣𝜏𝑖 is the node in𝑉 with 𝑖-th

largest in-degree;

3 𝚷0 ← I[:,𝑉 ′𝜏], 𝑡 ← 1

𝛼
;

4 for ℓ ← 1 to 𝑡 do 𝚷ℓ ← (1 − 𝛼) · P𝑉𝚷ℓ−1 + 𝚷0 ;

5 𝚷𝑡 ← 𝛼 · 𝚷𝑡 ;
6 for 𝑣𝜏 ∈ 𝑉 ′𝜏 do compute

∑
𝑣𝑗 ∈𝑉 𝚷𝑡 [𝑣𝑗 , 𝑣𝜏];

7 Select the top-𝑘 nodes 𝑣𝜏 ∈ 𝑉 ′𝜏 with the largest

∑
𝑣𝑗 ∈𝑉 𝚷𝑡 [𝑣𝑗 , 𝑣𝜏]

into𝑉𝜏 as the 𝑘 center nodes;

8 for 𝑣𝑗 ∈ 𝑉 do select 𝑣𝜏𝑖 ∈ 𝑉𝜏 with the largest 𝚷𝑡 [𝑣𝑗 , 𝑣𝜏𝑖], and set

Y0 [𝑖, 𝑣𝑗] ← 1;

9 return Y0;

Lemma 4.2. The optimal solution to the objective function in Eq. (16)
is X = UV⊤, where U and V are the left and right singular vectors of
(YY⊤)−

1

2 YF⊤ respectively. □

To compute SVD of (YY⊤)−
1

2 YF⊤ ∈ R𝑘×𝑘
,GenNCI employs the

randomized SVD algorithm [17], which finishes in 𝑂 (𝑘3) time.

With the above update rules for X and Y respectively, GenNCI
(Algorithm 2) iteratively updates X and Y for a maximum of 𝑡𝑚
iterations (Lines 2-9). In our experiments, we found that setting

𝑡𝑚 to 50 usually leads to satisfactory performance. Note that the

iterations may converge earlier than 𝑡𝑚 iterations (Line 9). Since up-

dating Y and X takes𝑂 (𝑛𝑘2) and𝑂 (𝑘3) time respectively, GenNCI
terminates within 𝑂 (𝑡𝑚 · (𝑛𝑘2 + 𝑘3)) time.

4.3 Effective NCI Initialization
Next we clarify the computation of the initial value Y0 of the NCI
(Line 2 of Algorithm 1). If we simply assign random values to

elements of Y0, the iterative process in ACMin from Lines 6 to

12 would converge slowly. To address this issue, we propose an

effective greedy initialization technique InitNCI, which usually

leads to fast convergence of ACMin in practice, as demonstrated in

our experiments in Section 5.4.

Given a cluster𝐶 , recall that its attributedmulti-hop conductance

Φ(𝐶) (Eq. (4)) is defined based on the intuition that Φ(𝐶) is lower
when an attributed random walk from any nodes in𝐶 is more likely

to stop at a node within 𝐶 . Further, we observe that in practice, a

high-quality cluster 𝐶 tends to have high intra-cluster connectivity

via certain center nodes within 𝐶 , and such a center node usually

has high in-degree (i.e., many in-neighbors). In other words, the

nodes belonging to the same cluster tend to have many paths to

the center node of the cluster, and consequently, a random walk

with restart (RWR) [27, 50] within a cluster is more likely to stop

at the center node [49]. Based on these intuitions, we propose to

leverage graph topology (i.e., 𝑉 and 𝐸𝑉 of the input attributed

graph 𝐺) as well as RWR to quickly identify 𝑘 possible cluster

center nodes, 𝑉𝜏 = {𝑣𝜏1 , 𝑣𝜏2 , · · · , 𝑣𝜏𝑘 } ⊂ 𝑉 , and greedily initialize

NCI Y0 by grouping the nodes in 𝑉 to a center node according to

their topological relationships to the center node.

Algorithm 3 presents the pseudo-code of InitNCI. After initializ-
ing Y0 to a 𝑘 × 𝑛 zero matrix and 𝑉𝜏 to an empty set at Line 1, the

6

Effective and Scalable Clustering on Massive Attributed Graphs TheWebConf ’21, April 19–23, 2021, Ljubljana, Slovenia

Algorithm 4: AppoxAAMC

Input: P𝑉 , R̂,R, 𝛼, 𝛽,Y.
Output: 𝜙 .

1 H0 ← (YY⊤)−
1

2 Y, 𝑡 ← 1

𝛼
;

2 for ℓ = 1 to 𝑡 do
3 Hℓ ← (1 − 𝛼) · ((1 − 𝛽) · P𝑉H⊤ℓ−1 + 𝛽 · R̂(R⊤H⊤ℓ−1)) + H0;

4 𝜙 ← 2

𝑘
·∑𝑘𝑖=1 H0 [𝑖] · (H⊤

0
[𝑖] − 𝛼 · H𝑡 [:, 𝑖]) ;

5 return 𝜙 ;

method first selects from 𝑉 a candidate set 𝑉 ′𝜏 of size 5𝑘 (Line 2),

which consists of the top-(5𝑘) nodes with the largest in-degrees.

The nodes in𝑉 ′𝜏 serve as the candidate nodes for the 𝑘 center nodes

to be detected. Then we compute the 𝑡-hop RWR value 𝚷𝑡 [𝑣 𝑗 , 𝑣𝜏]
from every node 𝑣 𝑗 ∈ 𝑉 to every node 𝑣𝜏 ∈ 𝑉 ′𝜏 from Lines 3 to 5

according to the following equation [63].

𝚷𝑡 =
∑𝑡
ℓ=0 𝛼 (1 − 𝛼)ℓPℓ𝑉 · I[:,𝑉

′
𝜏] (17)

In particular, we set 𝑡 = 1

𝛼 at Line 3, which is the expected length

of an RWR, and is usually sufficient for our purpose. If 𝚷𝑡 [𝑣 𝑗 , 𝑣𝜏]
is large, it means that the random walks starting from 𝑣 𝑗 are more

likely to stop at 𝑣𝜏 , which matches our aforementioned intuition of

possible cluster center nodes.

Then, at Line 6, for each candidate center node 𝑣𝜏 ∈ 𝑉 ′𝜏 , we
compute the sum of 𝚷𝑡 [𝑣 𝑗 , 𝑣𝜏] from all nodes 𝑣 𝑗 ∈ 𝑉 to 𝑣𝜏 . If 𝑣𝜏
has larger

∑
𝑣𝑗 ∈𝑉 𝚷𝑡 [𝑣 𝑗 , 𝑣𝜏], it indicates that the random walks

starting from any nodes in 𝑉 are more likely to stop at 𝑣𝜏 . There-

fore, at Line 7, we select the top-𝑘 nodes 𝑣𝜏 ∈ 𝑉 ′𝜏 with the largest∑
𝑣𝑗 ∈𝑉 𝚷𝑡 [𝑣 𝑗 , 𝑣𝜏𝑖] as the 𝑘 possible center nodes in 𝑉𝜏 . At Line 8,

for each node 𝑣 𝑗 ∈ 𝑉 , we select the center node 𝑣𝜏𝑖 ∈ 𝑉𝜏 with the

largest 𝚷𝑡 [𝑣 𝑗 , 𝑣𝜏𝑖] and greedily group 𝑣 𝑗 and 𝑣𝜏𝑖 into the same 𝑖-th

cluster by setting Y0 [𝑖, 𝑣 𝑗] to 1, completing the computation of Y0.
Note that Line 2 in Algorithm 3 takes 𝑂 (𝑛 + 𝑘 log(𝑛)) time, and

the computation of𝚷𝑡 requires𝑂 (𝑘𝛼 · |𝐸𝑉 |) time. Therefore, InitNCI
runs in 𝑂 (𝑘𝛼 · |𝐸𝑉 |) time.

4.4 Complete ACMin Algorithm and Analysis
Algorithm 1 summarizes the pseudo-code of ACMin, which takes

as input an attributed graph 𝐺 , the number of clusters 𝑘 , random

walk stopping probability 𝛼 , and attributed branching probability

𝛽 (defined in Definition 2.2). Initially (Line 1), ACMin computes

matrix R̂, explained in Section 4.1. Then (Line 2), ACMin computes

an initial value Y0 for Y via InitNCI (Algorithm 3), and derives the

corresponding value F0 for F according to Lemma 3.3 in Line 3.

Next (Line 5), we invoke AppoxAAMC (Algorithm 4) that uses Y
to compute 𝜙 , the best AAMC obtained so far. Note that the exact

AAMC 𝜙 = Ψ(Y) in Eq. (8) is hard to evaluate since S in Eq. (2)

is the sum of an infinite series. Instead, ApproxAAMC performs a

finite number 𝑡 = 1

𝛼 of iterations in Eq. (2) to obtain an approximate

AAMC, since the expected length of an attributed random walk is

1

𝛼 . Specifically, given P𝑉 , R̂,R, 𝛼, 𝛽 and Y as inputs, AppoxAAMC

first initializesH0 as (YY⊤)−
1

2 Y and the number of iterations 𝑡 to 1

𝛼
(Line 1 of Algorithm 4). Then, it computes the intermediate result

H𝑡 by 𝑡 iterations in Lines 2-3. Lastly AppoxAAMC computes 𝜙

with H𝑡 and H0 at Line 4. Algorithm 4 takes 𝑂 (𝑘𝛼 · (|𝐸𝑉 | + |𝐸𝑅 |))
time with the precomputed R̂.

Table 2: Datasets. (K=103, M=106, B=109)

Name |𝑉 | |𝐸𝑉 | |𝑅 | |𝐸𝑅 | |𝐶 |
Cora [31, 56, 57, 64, 68] 2.7K 5.4K 1.4K 49.2K 7

Citeseer [31, 56, 57, 64, 68] 3.3K 4.7K 3.7K 105.2K 6

Pubmed [56, 64, 68, 71] 19.7K 44.3K 0.5K 988K 3

Flickr [26, 31, 36, 62, 64] 7.6K 479.5K 12.1K 182.5K 9

TWeibo [64] 2.3M 50.7M 1.7K 16.8M 8

MAG-Scholar-C [3] 10.5M 265.2M 2.78M 1.1B 8

Utilizing algorithms GenNCI and AppoxAAMC, ACMin obtains

the binary NCI Yℓ and its corresponding quality measure 𝜙ℓ for

each iteration ℓ , after obtaining Fℓ . ACMin may terminate upon

convergence, or reaching a preset maximum number of iterations

𝑡𝑒 . In our experiments, we found that 𝑡𝑒 = 200 is usually sufficiently

large for convergence.

Next we analyze the total time and space complexities of ACMin.
The computation of R̂ at Line 1 in Algorithm 1 takes 𝑂 (|𝐸𝑅 |) time.

Algorithm 4 requires 𝑂 (𝑛𝑘 + 𝑘
𝛼 · (|𝐸𝑉 | + |𝐸𝑅 |)) time. In each itera-

tion (Lines 6-12), Line 7 takes𝑂 (𝑘 · (|𝐸𝑉 | + |𝐸𝑅 |)) time and the QR
decomposition over Zℓ takes𝑂 (𝑛𝑘2) time. According to Section 4.2

and Section 4.3, GenNCI and InitNCI run in𝑂 (𝑡𝑚 · (𝑛𝑘2 +𝑘3)) and
𝑂 (𝑘𝛼 · |𝐸𝑉 |) time, respectively. Thus, the total time complexity

of ACMin is 𝑂

(
𝑘 (1𝛼 + 𝑡𝑒) · (|𝐸𝑉 | + |𝐸𝑅 |) + 𝑛𝑘

2𝑡𝑒𝑡𝑚 + 𝑘𝑡𝑒
𝛼 · |𝐸𝑉 |)

)
when 𝑘 ≪ 𝑛, which equals 𝑂 (|𝐸𝑉 | + |𝐸𝑅 |) when 𝑡𝑒 , 𝑡𝑚 and 𝑘 are

regarded as constants. The space overhead incurred by ACMin
is determined by the storage of P𝑉 , R̂,R,Zℓ , Fℓ and Hℓ , which is

bounded by 𝑂 (|𝐸𝑉 | + |𝐸𝑅 | + 𝑛𝑘).

5 EXPERIMENTS
We experimentally evaluate ACMin against 11 competitors in terms

of both clustering quality and efficiency on 6 real-world datasets.

All experiments are conducted on a Linux machine powered by an

Intel Xeon(R) Gold 6240@2.60GHz CPU and 377GB RAM. Source

codes of all competitors are obtained from the respective authors.

5.1 Experimental Setup
Datasets. Table 2 shows the statistics of the 6 real-world directed

attributed graphs used in our experiments. |𝑉 | and |𝐸𝑉 | denote
the number of nodes and edges, while |𝑅 | and |𝐸𝑅 | represent the
number of attributes and node-attribute associations, respectively.

|𝐶 | is the number of ground-truth clusters in𝐺 . In particular, Cora3,
Citeseer3, Pubmed3 and MAG-Scholar-C4 are citation graphs, in

which each node represents a paper and each edge denotes a citation

relationship. Flickr5 and TWeibo 6
are social networks, in which

each node represents a user, and each directed edge represents

a following relationship. Further, notice that all 6 datasets have

ground-truth cluster labels, and the number of ground-truth clusters

|𝐶 | is also included in Table 2.

Competitors.We compare ACMin with 11 competitors, including

7𝑘-AGC algorithms (CSM [38], SA-Cluster [72],BAGC [58],MGAE

3
http://linqs.soe.ucsc.edu/data (accessed October, 2020)

4
https://figshare.com/articles/dataset/mag_scholar/12696653 (accessed October, 2020)

5
https://github.com/xhuang31/LANE (accessed October, 2020)

6
https://www.kaggle.com/c/kddcup2012-track1 (accessed October, 2020)

7

http://linqs.soe.ucsc.edu/data
https://figshare.com/articles/dataset/mag_scholar/12696653
https://github.com/xhuang31/LANE
https://www.kaggle.com/c/kddcup2012-track1

TheWebConf ’21, April 19–23, 2021, Ljubljana, Slovenia Renchi Yang, Jieming Shi, Yin Yang, Keke Huang, Shiqi Zhang, and Xiaokui Xiao

ACMin USC CSM BAGC SA-Cluster MGAE CDE AGCC PANE TADW LQANR PRRE

5 10 20 50 100

10
−1
10

0

10
1

10
2

10
3

10
4

running time (sec)

(a) Cora

5 10 20 50 100

10
−1
10

0

10
1

10
2

10
3

10
4

10
5

running time (sec)

(b) Citeseer

5 10 20 50 100

10
0

10
1

10
2

10
3

10
4

10
5

running time (sec)

(c) Pubmed

5 10 20 50 100

10
0

10
1

10
2

10
3

10
4

10
5

running time (sec)

(d) Flickr

5 10 20 50 100

10
2

10
3

10
4

10
5

running time (sec)

(e) TWeibo

5 10 20 50 100

10
3

10
4

10
5

running time (sec)

(f) MAG-Scholar-C

Figure 2: Running time with varying 𝑘 (best viewed in color).

Table 3: CA, NMI and AAMC with ground-truth (Large CA, NMI, and small AAMC indicate high clustering quality).

Solution
Cora Citeseer Pubmed Flickr TWeibo MAG-Scholar-C

CA NMI AAMC CA NMI AAMC CA NMI AAMC CA NMI AAMC CA NMI AAMC CA NMI AAMC

Ground-truth 1.0 1.0 0.546 1.0 1.0 0.531 1.0 1.0 0.505 1.0 1.0 0.691 1.0 1.0 0.719 1.0 1.0 0.63

TADW 0.554 0.402 0.593 0.539 0.333 0.569 0.483 0.096 0.55 0.16 0.062 0.733 - - - - - -

LQANR 0.64 0.492 0.559 0.587 0.374 0.549 0.403 0.022 0.612 0.127 0.002 0.739 - - - - - -

PRRE 0.547 0.396 0.604 0.576 0.322 0.592 0.62 0.269 0.518 0.454 0.321 0.713 - - - - - -

PANE 0.601 0.462 0.577 0.677 0.421 0.537 0.618 0.252 0.512 0.402 0.265 0.708 0.215 0.004 0.752 - - -

CSM 0.308 0.149 0.612 0.247 0.11 0.615 0.393 0.022 0.565 - - - - - - - - -

SA-Cluster 0.001 0.01 - - - - - - - - - - - - - - - -

BAGC 0.001 0.134 - 0.183 0 - - - - - - - - - - - - -

MGAE 0.633 0.456 0.571 0.661 0.408 0.545 0.419 0.076 0.556 0.266 0.109 0.729 - - - - - -

CDE 0.473 0.332 0.581 0.535 0.318 0.571 0.663 0.259 0.547 0.254 0.11 0.714 - - - - - -

AGCC 0.642 0.496 0.553 0.668 0.409 0.526 0.668 0.272 0.492 0.471 0.369 0.706 0.406 0.007 0.723 - - -

USC 0.635 0.455 0.706 0.495 0.326 0.682 0.548 0.212 0.614 - - - - - - - - -

ACMin 0.656 0.498 0.544 0.68 0.422 0.525 0.691 0.308 0.487 0.757 0.608 0.698 0.408 0.01 0.686 0.659 0.497 0.57

[57], CDE [31], AGCC [68], USC [54]), and 4 recent attributed net-

work embedding algorithms (TADW [59], PANE [64], LQANR [60],

PRRE [71]). The network embedding competitors are used together

with 𝑘-Means to produce clustering results. In addition, we also

compare with the classic unnormalized spectral clustering method

USC [54], which directly works on S to extract clusters by materi-

alizing S, computing the top-𝑘 eigenvectors of S, and then applying

𝑘-Means on the eigenvectors.

Parameter settings. We adopt the default parameter settings of

all competitors as suggested in their corresponding papers. Specif-

ically, for attributed network embedding competitors, we set the

embedding dimensionality to 128. For ACMin, we set 𝑡𝑒 = 200, 𝑡𝑚 =

50, 𝛼 = 0.2, and 𝛽 = 0.35. Competitor USC shares the same parame-

ter settings of 𝛼 , 𝛽 , and 𝑡𝑒 with ACMin.

Evaluation criteria. For efficiency evaluation, we vary the num-

ber of clusters 𝑘 in {5, 10, 20, 50, 100}, and report the running time

(seconds) of each method on each dataset in Section 5.2. The re-

ported running time does not include the time for loading datasets.

We terminate a method if it fails to return results within 3 days. In

terms of clustering quality, we report the proposed AAMC measure

(i.e., average attributed multi-hop conductance), modularity [40],

CA (clustering accuracy with respect to ground truth labels) and

NMI (normalized mutual information) [1] to measure the cluster-

ing quality in Section 5.3. Note that AAMC considers both graph

topology and node attributes to measure clustering quality, while

modularity only considers graph topology. Also, note that CA and

NMI rely on ground-truth clusters, while AAMC and modularity

do not. Therefore, when evaluating by CA and NMI, we set 𝑘 to be

|𝐶 | as in Table 2 for each dataset; when evaluating by modularity

and AAMC, we vary 𝑘 in {5, 10, 20, 50, 100}.

5.2 Efficiency Evaluation
Figure 2 presents the running time of all methods on all datasets

when varying the number of clusters 𝑘 in {5, 10, 20, 50, 100}. The 𝑦-
axis is the running time (seconds) in log-scale. As shown in Figure 2,

ACMin is consistently faster than all competitors on all datasets, of-

ten by up to orders of magnitude. ACMin is highly efficient on large

attributed graphs, e.g.,TWeibo andMAG-Scholar-C in Figures 2e and

2f, while most of the 11 competitors fail to return results within

three days. For instance, in Figure 2e, when 𝑘 = 5, ACMin needs 630
seconds to finish, which is 7.4× faster than AGCC (4634 seconds)

and 71× faster than PANE (44658 seconds), respectively. Further,

ACMin is the only method able to finish on MAG-Scholar-C dataset

that has 265.2 million edges and 1.1 billion attribute values. Specifi-

cally, ACMin only needs 1.68 hours when 𝑘 = 5. The high efficiency

of ACMin on massive real datasets is due to the its high scalable

algorithmic components, whose total cost is linear to the size of the

input graph as analyzed in Section 4.4. On small/moderate-sized at-

tributed graphs in Figures 2a-2d, ACMin is also significantly faster

than the competitors, especially when 𝑘 is small. For instance, when

𝑘 = 10, on Flickr in Figure 2d, ACMin takes 4 seconds, while the

fastest competitor PANE needs 381 seconds. Note that the total run-

ning time of ACMin increases linearly with 𝑘 , which is consistent

with our time complexity analysis in Section 4.4 when the number

of edges |𝐸𝑉 | + |𝐸𝑅 | far exceeds the number of nodes 𝑛. The running

time results for the 4 attributed network embedding competitors

(i.e., TADW, LQANR, PRRE, and PANE) are not sensitive to 𝑘 , since
their cost is dominated by the node embedding computation rather

8

Effective and Scalable Clustering on Massive Attributed Graphs TheWebConf ’21, April 19–23, 2021, Ljubljana, Slovenia

ACMin USC CSM BAGC SA-Cluster MGAE CDE AGCC PANE TADW LQANR PRRE

5 10 20 50 100

0.52

0.56

0.60

0.64

0.68

0.72

AAMC

(a) Cora

5 10 20 50 100

0.51

0.55

0.59

0.63

0.67

0.71

AAMC

(b) Citeseer

5 10 20 50 100

0.54

0.58

0.62

0.66

0.70

0.74

AAMC

(c) Pubmed

5 10 20 50 100

0.64

0.68

0.72

0.76

0.80

AAMC

(d) Flickr

5 10 20 50 100

0.65

0.70

0.75

0.80

AAMC

(e) TWeibo

5 10 20 50 100

0.50

0.55

0.60

0.65

AAMC

(f)MAG-Scholar-C

Figure 3: AAMC with varying 𝑘 (best viewed in color).

5 10 20 50 100

0.2

0.4

0.6

0.8

1

modularity

(a) Cora

5 10 20 50 100

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

modularity

(b) Citeseer

5 10 20 50 100

0

0.2

0.4

0.6

0.8

1

modularity

(c) Pubmed

5 10 20 50 100

0

0.1

0.3

0.5

0.7
modularity

(d) Flickr

5 10 20 50 100

0

0.1

0.2

0.3

0.4
modularity

(e) TWeibo

5 10 20 50 100

0.88

0.9

0.92

0.94

0.96
modularity

(f) MAG-Scholar-C

Figure 4: Modularity with varying 𝑘 (best viewed in color).

ACMin ACMin-RI

0 40 80 120 160 200

0.54

0.56

0.58

0.60

0.70

AAMC

(a) Cora

0 40 80 120 160 200

0.52

0.54

0.56

0.58

0.68

AAMC

(b) Citeseer

0 40 80 120 160 200

0.46

0.48

0.50

0.60

0.62

AAMC

(c) Pubmed

0 40 80 120 160 200

0.69

0.70

0.71

0.72

0.73

0.74

AAMC

(d) Flickr

0 40 80 120 160 200

0.732

0.735

0.738

0.741

0.744

0.747

0.750

AAMC

(e) TWeibo

0 40 80 120 160 200

0.56

0.59

0.62

0.70

0.73

AAMC

(f) MAG-Scholar-C

Figure 5: AAMC with varying 𝑡𝑒 (best viewed in color).

than 𝑘-Means. Even on settings with a large 𝑘 , ACMin is still faster

than all these competitors.

5.3 Quality Evaluation
CA, NMI andAAMCwith ground-truth. Table 3 reports the CA,
NMI, and AAMC scores of all methods, comparing to the ground-

truth clusters of each dataset in Table 2. We also report the AAMC

values of the ground-truth labels, which are the lower than the

AAMC obtained by all methods except for ACMin, which explicitly

aims to minimize AAMC. Meanwhile, we observe that relative per-

formance of all methods measured by AAMC generally agrees with

CA. These results demonstrate that AAMC effectively measures

effectively reflects clustering quality.

ACMin clearly and consistently achieves the best CA, NMI, and

AAMC on all datasets. Specifically, on small attributed graphs,

i.e.,Cora, Citeseer and Pubmed, compared with the best competi-

tors (underlined in Table 3) ACMin improves CA by 1.4%, 0.3%,

and 2.3%, and NMI by 0.2%, 0.1%, and 3.6%, respectively. The CA

and NMI of ACMin are also significantly better than the competi-

tors on moderate-sized/large attributed graphs (i.e., Flickr, TWeibo,
and MAG-Scholar-C). For instance, on Flickr, ACMin has CA 75.7%,

which is 28.6% higher than that of the best competitorAGCC, which
is only 47.1%. On TWeibo, ACMin is slightly better than AGCC;
note that on this dataset, ACMin is orders of magnitude faster than

AGCC as shown in Figure 2e. Hence, ACMin is overall preferable

than AGCC in these settings. Finally, ACMin is the only 𝑘-AGC

method capable of handlingMAG-Scholar-C, and achieves CA 65.9%

and NMI 49.7%. The superior clustering quality achieved by ACMin
demonstrates the effectiveness of the proposed AAMC optimization

objective in Section 2, as well as our approximate solution for this

optimization program described in Section 4.

AAMC with varying 𝑘 . Figure 3 reports the AAMC achieved by

ACMin against all competitors on all datasets when varying the

number 𝑘 of clusters in {5, 10, 20, 50, 100}. Observe that ACMin con-

sistently produces the smallest AAMC under all 𝑘 settings on all

datasets (smaller AAMC indicates better results), which confirms

that the proposed ACMin algorithm (Algorithm 1) effectively mini-

mizes the proposed AAMC objective function defined in Section

2.4. In particular, as shown in Figure 3, when 𝑘 = 10, ACMin has

AAMC better than the best competitor by a margin of 0.84%, 0.36%,

0.71%, 0.84% and 2.6% on Cora, Citeseer, Pubmed, Flickr and TWeibo
respectively. Figure 3f reports the AAMC achieved by ACMin on

MAG-Scholar-C, which is the only method able to return results.

Further, considering the relative performance of all methods mea-

sured by CA and NMI generally agree with that measured by AAMC

as shown in the results in Table 3, and the fact that ACMin is far

more efficient and scalable compared to its competitors as shown

in Section 5.2, we conclude that ACMin is the method of choice for

𝑘-AGC on massive graphs in practice.

9

TheWebConf ’21, April 19–23, 2021, Ljubljana, Slovenia Renchi Yang, Jieming Shi, Yin Yang, Keke Huang, Shiqi Zhang, and Xiaokui Xiao

Modularity with varying 𝑘 . Figure 4 reports themodularity of all
methods on all datasets when varying 𝑘 in {5, 10, 20, 50, 100}. Again,
observe that, for all settings of 𝑘 and all datasets (except TWeibo),
ACMin has the highest modularity. In particular, ACMin obtains

a substantial imporvement of up to 5%, 4.7%, 3.8%, and 4.1% on

Cora, Citeseer, Pubmed and Flickr, compared to the best competitor,

respectively. Note that modularity only considers graph topology

and ignores node attributes, indicating that modularity may not be

able to fully evaluate clustering quality of attributed graphs. This

may explain why on TWeibo the modularity of ACMin is slightly

lower than some competitors. Even so, ACMin still achieves high

modularity under most cases, meaning that the proposed attributed

random walk model can still preserve graph topological features

for clustering, in addition to node attributes.

5.4 Convergence Analysis of ACMin
In this section, we evaluate the convergence properties of ACMin,
focusing on the effects of the greedy initialization technique InitNCI
described in Section 4.3 on convergence speed. In particular, we

compare ACMin with an ablated version ACMin-RI that replaces
InitNCI at Line 2 of Algorithm 1 with random initialization of Y0.
The number 𝑘 of clusters to be detected is set to be |𝐶 | as in Table

2 for each dataset. Figure 5 reports the AAMC (i.e., Ψ(Y) in Eq. (8))

produced by ACMin and ACMin-RI per iterations (Lines 6-12 in Al-

gorithm 1), when 𝑡𝑒 is set to 200. Observe that the AAMC produced

by ACMin decreases significantly faster than that of ACMin-RI
in the early iterations, and also converges faster than ACMin-RI.
For instance, in Figure 5b, on Citeseer, ACMin requires about 80

iterations to reach a plateaued AAMC, while ACMin-RI needs 140
iterations. Moreover, GenNCI is able to help ACMin to achieve

lower AAMC at convergence as shown in Figure 5. This experimen-

tal evaluation demonstrates the efficiency and effectiveness of the

proposed greedy initialization technique in Section 4.3.

6 RELATEDWORK
Attributed graph clustering has been extensively studied in liter-

ature, as surveyed in [4, 5, 11]. In the following, we review the

existing methods that are most relevant to this work.

Edge-weight-based clustering. A classic methodology is to con-

vert the input attributed graph to a weighted graph by assigning

each edge a weight based on the attribute and topological similarity

between the two nodes of the edge; then, traditional weighted graph

clustering algorithms are directly applied [7, 35, 39, 45, 48]. For in-

stance, Neville et al. [39] assign a weight to each edge (𝑢, 𝑣) of the
input attributed graph𝐺 based on the number of attribute values

that 𝑢 and 𝑣 have in common, and construct a weighted graph 𝐺 ′.
Then they apply the classic spectral clustering [54] over 𝐺 ′ to pro-

duce clusters. However, these methods only consider the attributes

of two directly connected nodes and use hand-crafted weights to

represent attributes, and thus, result in inferior clustering quality.

Distance-based clustering. Existing distance-based clustering so-
lutions construct a distance matrix M by combining the topolog-

ical and attribute similarity between nodes, and then apply clas-

sic distance-based clustering methods, such as 𝑘-Means [20] and
𝑘-Medoids [44], onM to generate clusters. For instance, SA-Cluster

[72] extends the original input attributed graph 𝐺 to an attribute-

augmented graph𝐺 ′ by treating each attribute as a node, and then

samples random walks over 𝐺 ′ to compute the distance between

nodes in 𝐺 ′, in order to construct M, which is then fed into a 𝑘-

Centroids method to generate clusters. Further, DCom [7] applies

hierarchical agglomerative clustering on a constructed distance ma-

trix. CSM [38] computes the distance matrixM based on a shortest

path strategy that considers both structural and attribute relevance

among nodes, and applies 𝑘-Medoids overM to generate clusters.

ANCA [10] applies 𝑘-Means for the sum of eigenvectors of the dis-

tance and similarity matrices to generate clusters. Distance-based

clustering methods suffer from severe efficiency issues since they

require to compute the distance of every node pair, resulting in

𝑂 (𝑛2) time and space overhead, which is prohibitive in practice.

For instance, as shown in our experiments, both SA-Cluster and
CSM suffer from costly running time and poor clustering quality.

Probabilistic-model-based clustering. Based on the assumption

that the structure, attributes, and clusters of attributed graphs are

generated according to a certain parametric distribution, there exist

a collection of probabilistic-model-based clustering methods, which

statistically infer a probabilistic model for attributed graph cluster-

ing, in order to generate clustering results. In particular, PCL-DC
[66] combines a conditional model of node popularity and a dis-

criminative model that reduces the impact of irrelevant attributes

into a unified model, and then finds the clustering result that opti-

mizes the model. CohsMix [67] formulates the clustering problem

by MixNet model [42] and then utilizes a varient of EM algorithm

to optimize it, in order to generate clustering results. BAGC [58]

designs a generative Bayesian model [8] that produces a sample of

all the possible combinations of a graph based on adjacency matrix

A and attribute matrixX, and aims to find a clustering result𝐶 max-

imizing a conjoint probability P(𝐶 |A,X). NEMBP [22] proposes

a generative model with two parts: one part for clusters and the

other part for attributes, and then uses a co-learning strategy to

jointly train the two parts by a nested EM algorithm and belief

propagation. Note that the optimization process to estimate the

parameters of the likelihood in these probabilistic-model-based

clustering methods often incurs substantial overheads and results

to long running time, as validated in our experiments (Section 5.2).

Embedding-based methods. In recent years, a plethora of net-

work embedding techniques are proposed for attributed graphs. The

objective of network embedding is to learn an embedding vector

for each node such that the graph topology and attribute infor-

mation surrounding the nodes can be preserved. We can directly

employ traditional clustering methods (e.g., 𝑘-Means) over the em-

bedding vectors to generate clusters [20, 44]. AA-Cluster [2] builds
a weighted graph based on graph topology and node attributes, and

then applies homogeneous network embedding on the weighted

graph to generate embeddings.MGAE [57] proposes a marginalized

graph convolutional network to learn embeddings. CDE [31] learns

node embeddings by optimizing a non-negative matrix factoriza-

tion problem based on community structure embeddings and node

attributes. DAEGC [56] fuses graph topology and node attributes

via an attention-based autoencoder [51] to obtain embeddings, and

then generates soft labels to guide a self-training graph clustering

10

Effective and Scalable Clustering on Massive Attributed Graphs TheWebConf ’21, April 19–23, 2021, Ljubljana, Slovenia

procedure. AGCC[68] utilizes an adaptive high-order graph convo-

lution method to learn embeddings that capture global structure,

and then applies the classic spectral clustering on the similarity

matrix computed from the learnt embeddings to obtain clusters.

The above methods either incur immense overheads in learning

embeddings or suffer from unsatisfactory clustering quality. There

are many attributed network embedding methods proposed, e.g.,
[14, 18, 23, 33, 36, 43, 52, 59–61, 64, 70, 71]. However, most of them

are not specially designed for clustering purpose, leading to subop-

timal clustering quality, as demonstrated in our experiments when

comparing with TADW, LQANR, PRRE and PANE.

7 CONCLUSIONS
This paper presents ACMin, an effective and scalable solution for

𝑘-AGC computation. ACMin achieves high scalability and effective-

ness through a novel problem formulation based on the proposed

attributed multi-hop conductance measure for cluster quality, as

well as a carefully designed iterative optimization framework and an

effective greedy clustering initialization method. Extensive experi-

ments demonstrate that ACMin achieves substantial performance

gains over the previous state of the art in terms of both efficiency

and clustering quality. Regarding future work, we plan to study

parallelized versions of ACMin, running on multi-core CPUs and

GPUs, as well as in a distributed setting with multiple servers, in or-

der to handle even larger datasets. Meanwhile, we intend to extend

ACMin to handle attributed heterogeneous graphs with different

types of nodes and edges.

ACKNOWLEDGMENTS
A PROOFS
Proof of Lemma 2.3. Let 𝑝ℓ (𝑣𝑖 , 𝑣 𝑗) be the probability that an at-

tributed random walk starting from 𝑣𝑖 stops at 𝑣 𝑗 at the ℓ-th hop.

We first prove that

𝑝ℓ (𝑣𝑖 , 𝑣 𝑗) = 𝛼 (1 − 𝛼)ℓ · ((1 − 𝛽) · P𝑉 + 𝛽 · P𝑅)ℓ [𝑣𝑖 , 𝑣 𝑗] . (18)

Note that if Eq. (18) holds, the overall probability that an attributed

random walk from 𝑣𝑖 terminates at 𝑣 𝑗 is
∑∞
ℓ=0 𝑝ℓ (𝑣𝑖 , 𝑣 𝑗) = S[𝑣𝑖 , 𝑣 𝑗],

which establishes the equivalence in Eq. (2). To this end, we prove

Eq. (18) by induction. First, let us consider the initial case that

the attributed random walk terminates at source node 𝑣𝑖 with

probability 𝛼 . In this case, 𝑝0 (𝑣𝑖 , 𝑣 𝑗) = 𝛼 if 𝑣𝑖 = 𝑣 𝑗 ; otherwise

𝑝0 (𝑣𝑖 , 𝑣 𝑗) = 0, which is identical to the r.h.s of Eq. (18) when

ℓ = 0. Therefore, Eq. (18) holds when ℓ = 0. Assume that Eq.

(18) holds at the ℓ ′-th hop. Then the probability that an attributed

random walk from 𝑣𝑖 visits any node 𝑣𝑙 ∈ 𝑉 at the ℓ ′-th hop is

(1−𝛼)ℓ′ · ((1− 𝛽) · P𝑉 + 𝛽 · P𝑅)ℓ
′ [𝑣𝑖 , 𝑣𝑙]. Based on this assumption,

for the case ℓ = ℓ ′+1, with probability 1−𝛼 , it will navigate to node
𝑣 𝑗 according to the probability (1 − 𝛽) · P𝑉 [𝑣𝑙 , 𝑣 𝑗] + 𝛽 · P𝑅 [𝑣𝑙 , 𝑣 𝑗],
and finally stop at 𝑣 𝑗 with probability 𝛼 . Thus, 𝑝ℓ′+1 (𝑣𝑖 , 𝑣 𝑗) =∑

𝑣𝑙 ∈𝑉 (1 − 𝛼)
ℓ′ · ((1 − 𝛽) · P𝑉 + 𝛽 · P𝑅)ℓ

′ [𝑣𝑖 , 𝑣𝑙] · (1−𝛼)𝛼 ((1−𝛽) ·
P𝑉 [𝑣𝑙 , 𝑣 𝑗] + 𝛽 · P𝑅 [𝑣𝑙 , 𝑣 𝑗]) = 𝛼 (1 − 𝛼)ℓ′+1 · ((1 − 𝛽) · P𝑉 + 𝛽 ·
P𝑅)ℓ

′+1 [𝑣𝑖 , 𝑣 𝑗], which completes the proof. □

Proof of Lemma 3.1. By Eq. (6), for cluster 𝐶𝑖 , we have vector

((YY⊤)−
1

2 Y) [𝑐𝑖], where each entry ((YY⊤)−
1

2 Y) [𝑐𝑖 , 𝑣 𝑗] = 1/
√
|𝐶𝑖 |

if 𝑣 𝑗 ∈ 𝐶𝑖 and otherwise ((YY⊤)−
1

2 Y) [𝑐𝑖 , 𝑣 𝑗] = 0. Note that

2 · ((YY⊤)−
1

2 Y) [𝑐𝑖] · (I − S) · ((YY⊤)−
1

2 Y) [𝑐𝑖]⊤

=
∑

𝑣𝑗 ,𝑣𝑙 ∈𝑉 S[𝑣 𝑗 , 𝑣𝑙] · (((YY⊤)−
1

2 Y) [𝑐𝑖 , 𝑣 𝑗] − ((YY⊤)−
1

2 Y) [𝑐𝑖 , 𝑣𝑙])2

=
∑

𝑣𝑗 ∈𝐶𝑖 ,𝑣𝑙 ∈𝑉 \𝐶𝑖 S[𝑣 𝑗 , 𝑣𝑙] · ((YY
⊤)−

1

2 Y) [𝑐𝑖 , 𝑣 𝑗]2 = Φ(𝐶𝑖)
2

.

Then we have∑𝑘
𝑖=1 Φ(𝐶𝑖)

𝑘
= 2

𝑘

∑𝑘
𝑐𝑖=1
((YY⊤)−

1

2 Y) [𝑐𝑖] · (I − S) · ((YY⊤)−
1

2 Y) [𝑐𝑖]⊤

= 2

𝑘
· trace(((YY⊤)−

1

2 Y) · (I − S) · ((YY⊤)−
1

2 Y)⊤),

which completes our proof. □

Proof of Lemma 3.2. First, we construct a weighted graph G =

(V, E) based on the input graph 𝐺 = (𝑉 , 𝐸𝑉 , 𝑅, 𝐸𝑅) by letting

V = 𝑉 and E = {(𝑣𝑖 , 𝑣 𝑗 , S[𝑣𝑖 , 𝑣 𝑗]) | 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 and S[𝑣𝑖 , 𝑣 𝑗] > 0},
where S[𝑣𝑖 , 𝑣 𝑗] signifies the weight of edge (𝑣𝑖 , 𝑣 𝑗). Thus, Eq. (8)
can be reduced to the objective function of the min-cut problem on

G, which is proven to be NP-hard in [15, 55]. □

Proof of Lemma 3.3. Let _𝑖 (M) be the 𝑖-th smallest eigenvalue of

matrix M. Note that ∀Y ∈ R𝑘×𝑛
, ((YY⊤)−

1

2 Y) · ((YY⊤)−
1

2 Y)⊤ = I,
meaning that 𝑓 (Y) = ((YY⊤)−

1

2 Y)⊤ · ((YY⊤)−
1

2 Y) is a projec-

tion matrix of rank 𝑘 . Therefore, ∀𝑖 < 𝑛 − 𝑘 + 1, _𝑖 (𝑓 (Y)) = 0 and

∀𝑖 ≥ 𝑛 − 𝑘 + 1, _𝑖 (𝑓 (Y)) = 1. By Von Neumann’s trace inequality

[37] and the property of matrix trace, for any Y ∈ R𝑘×𝑛
, we have

the following inequality:

Ψ(Y) = 2

𝑘
· trace(((YY⊤)−

1

2 Y) · (I − S) · ((YY⊤)−
1

2 Y)⊤)
= 2

𝑘
· trace((I − S) · 𝑓 (Y)) ≥ 2

𝑘
·∑𝑛

𝑖=1 _𝑖 (I − S) · _𝑛−𝑖+1 (𝑓 (Y))

= 2

𝑘
·∑𝑘

𝑖=1 _𝑖 (I − S) =
2

𝑘
·∑𝑘

𝑖=1 (1 − _𝑛−𝑖+1 (S)) . (19)

Note that F be the top-𝑘 eigenvectors of S, implying FF⊤ = I and
(I − S) · F[𝑐𝑖]⊤ = (1 − _𝑛−𝑖+1 (S)) · F[𝑐𝑖]⊤ for 1 ≤ 𝑖 ≤ 𝑘 . Hence,

2

𝑘
· trace(F(I − S)F⊤) = 2

𝑘
·∑𝑘

𝑖=1 (1 − _𝑛−𝑖+1 (S)), (20)

which implies that Ψ(Y) is minimized when ((YY⊤)−
1

2 Y) = F.
Suppose Y∗ ∈ 1𝑘×𝑛 is the optimal solution to Eq. (8). Therefore,

with Eq. (19) and Eq. (20), the following inequality holds

𝜙∗ = Ψ(Y∗) = 2

𝑘
· trace(((Y∗Y∗⊤)−

1

2 Y∗) (I − S) ((Y∗Y∗⊤)−
1

2 Y∗)⊤)

≥ 2

𝑘
·∑𝑘

𝑖=1 (1 − _𝑛−𝑖+1 (S)) =
2

𝑘
· trace(F(I − S)F⊤),

which finishes our proof. □

Proof of Lemma 3.4. Eq. (9) implies thatXF→ (YY⊤)−
1

2 Ywhere

X⊤X = I. By the property of matrix trace, we have

Ψ(Y) = 2

𝑘
· trace((YY⊤)−

1

2 Y · (I − S) · ((YY⊤)−
1

2 Y)⊤)
→ 2

𝑘
· trace(XF(I − S)F⊤X⊤)

= 2

𝑘
· trace(X⊤XF(I − S)F⊤) = 2

𝑘
· trace(F(I − S)F⊤) . (21)

By Lemma 3.3, we have Ψ(Y) → 𝜙∗, completing our proof. □

Proof of Lemma 4.1.We need the following lemmas for the proof.

Lemma A.1 ([69]). If [_, x] is an eigen-pair of matrixM ∈ R𝑛×𝑛 ,
then [∑𝑡

ℓ=0𝑤ℓ_
ℓ , x] is an eigen-pair of matrix

∑𝑡
ℓ=0𝑤ℓMℓ .

11

TheWebConf ’21, April 19–23, 2021, Ljubljana, Slovenia Renchi Yang, Jieming Shi, Yin Yang, Keke Huang, Shiqi Zhang, and Xiaokui Xiao

Lemma A.2 ([21]). Given aM ∈ R𝑛×𝑛 satisfying
∑𝑛

𝑗=1M[𝑖, 𝑗] =
1 ∀1 ≤ 𝑖 ≤ 𝑛 and each entry M[𝑖, 𝑗] ≥ 0 ∀1 ≤ 𝑖, 𝑗 ≤ 𝑛, the largest
eigenvalue _1 ofM is 1.

Suppose that [_𝑖 , x𝑖] is an eigen-pair of (1 − 𝛽) · P𝑉 + 𝛽 · P𝑅
and _𝑖 is its 𝑖-th largest eigenvalue. Note that each row sum of

(1−𝛽) ·P𝑉 +𝛽 ·P𝑅 is equal to 1 and each entry of (1−𝛽) ·P𝑉 +𝛽 ·P𝑅
is non-negative. Then, by Lemma A.2, we have _𝑖 ∈ [−1, 1] for
1 ≤ 𝑖 ≤ 𝑛. Let 𝑓 (_𝑖) =

∑𝑡
ℓ=0 𝛼 (1 − 𝛼)ℓ_ℓ𝑖 . Lemma A.1 implies that

any eigen-pair ∀𝑖 ∈ [1, 𝑛], [𝑓 (_𝑖), x𝑖] of (1 − 𝛽) · P𝑉 + 𝛽 · P𝑅 is

an eigen-pair of S. By the sum of geometric sequence, we have

𝑓 (_𝑖) = 𝛼 · 1−(1−𝛼)
𝑡+1_𝑡+1

𝑖

1−(1−𝛼)_𝑖 = 𝛼
1−(1−𝛼)_𝑖 , which is is monotonously

decreasing when 1 ≤ 𝑖 ≤ 𝑛. Hence, for 1 ≤ 𝑖 ≤ 𝑛, 𝑓 (_𝑖) and x𝑖
are the 𝑖-th largest eigenvalue and the 𝑖-th largest eigenvector of

S. Recall that F is the top-𝑘 eigenvectors of (1 − 𝛽) · P𝑉 + 𝛽 · P𝑅 .
Therefore, F is the top-𝑘 eigenvectors of S. The lemma is proved. □

Proof of Lemma 4.2. Let Z = V⊤X⊤U. Since U and V are the left

and right singular vectors, we haveUU⊤ = I andVV⊤ = I. Note that
ZZ⊤ = I, which implies that each Z[𝑖, 𝑗] satisfies −1 ≤ Z[𝑖, 𝑗] ≤ 1.

Also, 𝚺[𝑖, 𝑖] is a singular value and thus 𝚺[𝑖, 𝑖] > 0. Then,

trace((YY⊤)−
1

2 YF⊤X⊤) = trace(U𝚺V⊤X⊤) = trace(𝚺V⊤X⊤U)

=
∑𝑘
𝑖=1 𝚺[𝑖, 𝑖] · Z[𝑖, 𝑖] ≤

∑𝑘
𝑖=1 𝚺[𝑖, 𝑖] .

Therefore, trace((YY⊤)−
1

2 YF⊤X⊤) is maximizedwhenZ = I, which
implies that X = UV⊤. The lemma is proved. □

REFERENCES
[1] C. C. Aggarwal and C. K. Reddy. Data Clustering: Algorithms and Applications.

CRC Press, 2014.

[2] E. Akbas and P. Zhao. Attributed graph clustering: An attribute-aware graph

embedding approach. In ASONAM, 2017.

[3] A. Bojchevski, J. Klicpera, B. Perozzi, A. Kapoor, M. Blais, B. Rózemberczki,

M. Lukasik, and S. Günnemann. Scaling graph neural networks with approximate

pagerank. In SIGKDD, 2020.
[4] C. Bothorel, J. D. Cruz, M. Magnani, and B. Micenkova. Clustering attributed

graphs: models, measures and methods. Network Science, 2015.
[5] P. Chunaev. Community detection in node-attributed social networks: a survey.

arXiv preprint arXiv:1912.09816, 2019.
[6] F. R. Chung and F. C. Graham. Spectral graph theory. 1997.
[7] D. Combe, C. Largeron, E. Egyed-Zsigmond, and M. Géry. Combining relations

and text in scientific network clustering. In ASONAM, 2012.

[8] P. Congdon. Bayesian statistical modelling. 2007.
[9] J. W. Demmel. Applied numerical linear algebra. Siam, 1997.

[10] I. Falih, N. Grozavu, R. Kanawati, and Y. Bennani. Anca: Attributed network

clustering algorithm. In Complex Networks, 2017.
[11] I. Falih, N. Grozavu, R. Kanawati, and Y. Bennani. Community detection in

attributed network. In WWW, 2018.

[12] S. Fortunato. Community detection in graphs. Physics reports, 2010.
[13] L. C. Freeman. Cliques, galois lattices, and the structure of human social groups.

Social networks, 1996.
[14] H. Gao, J. Pei, and H. Huang. Progan: Network embedding via proximity genera-

tive adversarial network. In SIGKDD, 2019.
[15] O. Goldschmidt and D. S. Hochbaum. Polynomial algorithm for the k-cut problem.

In FOCS, 1988.
[16] R. Guimera and L. A. N. Amaral. Functional cartography of complex metabolic

networks. Nature, 2005.
[17] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness:

Probabilistic algorithms for constructing approximate matrix decompositions.

SIAM review, 2011.
[18] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large

graphs. In NeurIPS, 2017.
[19] D. Hanisch, A. Zien, R. Zimmer, and T. Lengauer. Co-clustering of biological

networks and gene expression data. Bioinformatics, 2002.
[20] J. A. Hartigan andM. A.Wong. Algorithm as 136: A k-means clustering algorithm.

J R Stat Soc Ser C, 1979.
[21] T. Haveliwala and S. Kamvar. The second eigenvalue of the google matrix.

Technical report, Stanford, 2003.

[22] D. He, Z. Feng, D. Jin, X. Wang, and W. Zhang. Joint identification of network

communities and semantics via integrative modeling of network topologies and

node contents. In AAAI, 2017.
[23] Y. Hou, H. Chen, C. Li, J. Cheng, and M.-C. Yang. A representation learning

framework for property graphs. In SIGKDD, 2019.
[24] D. Hric, R. K. Darst, and S. Fortunato. Community detection in networks: Struc-

tural communities versus ground truth. Physical Review E, 2014.
[25] H. Huang, H. Shen, and Z. Meng. Community-based influence maximization in

attributed networks. Applied Intelligence, 2020.
[26] X. Huang, J. Li, and X. Hu. Label informed attributed network embedding. In

WSDM, 2017.

[27] G. Jeh and J. Widom. Scaling personalized web search. In WWW, 2003.

[28] G. Kossinets and D. J. Watts. Empirical analysis of an evolving social network.

science, 2006.
[29] T. La Fond and J. Neville. Randomization tests for distinguishing social influence

and homophily effects. In WWW, 2010.

[30] A. Lancichinetti and S. Fortunato. Community detection algorithms: a compara-

tive analysis. Physical review E, 2009.
[31] Y. Li, C. Sha, X. Huang, and Y. Zhang. Community detection in attributed graphs:

An embedding approach. In AAAI, 2018.
[32] U. Liji, Y. Chai, and J. Chen. Improved personalized recommendation based on

user attributes clustering and score matrix filling. CSI, 2018.
[33] J. Liu, Z. He, L. Wei, and Y. Huang. Content to node: Self-translation network

embedding. In SIGKDD, 2018.
[34] L. Lovász et al. Random walks on graphs: A survey. Combinatorics, Paul erdos is

eighty, 1993.
[35] F. Meng, X. Rui, Z. Wang, Y. Xing, and L. Cao. Coupled node similarity learning

for community detection in attributed networks. Entropy, 2018.
[36] Z. Meng, S. Liang, H. Bao, and X. Zhang. Co-embedding attributed networks. In

WSDM, 2019.

[37] L. Mirsky. A trace inequality of john von neumann. Monatshefte für mathematik,
1975.

[38] W. Nawaz, K.-U. Khan, Y.-K. Lee, and S. Lee. Intra graph clustering using collab-

orative similarity measure. DAPD, 2015.
[39] J. Neville, M. Adler, and D. Jensen. Clustering relational data using attribute and

link information. In IJCAI, 2003.
[40] M. E. Newman and M. Girvan. Finding and evaluating community structure in

networks. Physical review E, 2004.
[41] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an

algorithm. In NeurIPS, 2002.
[42] K. Nowicki and T. A. B. Snijders. Estimation and prediction for stochastic block-

structures. J Am Stat Assoc, 2001.
[43] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang. Adversarially regularized

graph autoencoder for graph embedding. In IJCAI, 2018.
[44] H.-S. Park and C.-H. Jun. A simple and fast algorithm for k-medoids clustering.

Expert systems with applications, 2009.
[45] Y. Ruan, D. Fuhry, and S. Parthasarathy. Efficient community detection in large

networks using content and links. In WWW, 2013.

[46] H. Rutishauser. Computational aspects of fl bauer’s simultaneous iteration

method. Numerische Mathematik, 1969.
[47] S. E. Schaeffer. Graph clustering. Computer science review, 2007.
[48] K. Steinhaeuser and N. V. Chawla. Community detection in a large real-world

social network. In SBP. 2008.
[49] S. A. Tabrizi, A. Shakery, M. Asadpour, M. Abbasi, and M. A. Tavallaie. Personal-

ized pagerank clustering: A graph clustering algorithm based on random walks.

Physica A, 2013.
[50] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk with restart and its

applications. In ICDM, 2006.

[51] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph

attention networks. ICLR, 2018.
[52] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm. Deep

Graph Infomax. In ICLR, 2019.
[53] K. Voevodski, S.-H. Teng, and Y. Xia. Finding local communities in protein

networks. BMC bioinformatics, 2009.
[54] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 2007.
[55] D. Wagner and F. Wagner. Between min cut and graph bisection. In MFCS, 1993.
[56] C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, and C. Zhang. Attributed graph

clustering: a deep attentional embedding approach. In IJCAI, 2019.
[57] C. Wang, S. Pan, G. Long, X. Zhu, and J. Jiang. Mgae: Marginalized graph

autoencoder for graph clustering. In CIKM, 2017.

[58] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. A model-based approach to

attributed graph clustering. In SIGMOD, 2012.
[59] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Chang. Network representation learning

with rich text information. In AAAI, 2015.
[60] H. Yang, S. Pan, L. Chen, C. Zhou, and P. Zhang. Low-bit quantization for

attributed network representation learning. In IJCAI, 2019.
[61] H. Yang, S. Pan, P. Zhang, L. Chen, D. Lian, and C. Zhang. Binarized attributed

network embedding. In ICDM, 2018.

12

Effective and Scalable Clustering on Massive Attributed Graphs TheWebConf ’21, April 19–23, 2021, Ljubljana, Slovenia

[62] J. Yang, J. McAuley, and J. Leskovec. Community detection in networks with

node attributes. In ICDM, 2013.

[63] R. Yang, J. Shi, X. Xiao, Y. Yang, and S. S. Bhowmick. Homogeneous network

embedding for massive graphs via reweighted personalized pagerank. PVLDB,
2020.

[64] R. Yang, J. Shi, X. Xiao, Y. Yang, J. Liu, and S. S. Bhowmick. Scaling attributed

network embedding to massive graphs. PVLDB, 2021.
[65] R. Yang, X. Xiao, Z. Wei, S. S. Bhowmick, J. Zhao, and R.-H. Li. Efficient estimation

of heat kernel pagerank for local clustering. In SIGMOD, 2019.
[66] T. Yang, R. Jin, Y. Chi, and S. Zhu. Combining link and content for community

detection: a discriminative approach. In SIGKDD, 2009.
[67] H. Zanghi, S. Volant, and C. Ambroise. Clustering based on random graph model

embedding vertex features. Pattern Recognition Letters, 2010.

[68] X. Zhang, H. Liu, Q. Li, and X.-M. Wu. Attributed graph clustering via adaptive

graph convolution. In IJCAI, 2019.
[69] Z. Zhang, P. Cui, X. Wang, J. Pei, X. Yao, and W. Zhu. Arbitrary-order proximity

preserved network embedding. In SIGKDD, 2018.
[70] Z. Zhang, H. Yang, J. Bu, S. Zhou, P. Yu, J. Zhang, M. Ester, and C. Wang. Anrl:

Attributed network representation learning via deep neural networks. In IJCAI,
2018.

[71] S. Zhou, H. Yang, X. Wang, J. Bu, M. Ester, P. Yu, J. Zhang, and C. Wang. Prre:

Personalized relation ranking embedding for attributed networks. In CIKM, 2018.

[72] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on structural/attribute

similarities. PVLDB, 2009.
[73] Y. Zhou, H. Cheng, and J. X. Yu. Clustering large attributed graphs: An efficient

incremental approach. In ICDM, 2010.

13

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Preliminaries
	2.2 Attributed Random Walk Model
	2.3 Attributed Multi-Hop Conductance
	2.4 Objective Function

	3 Solution Overview
	4 Detailed ACMin Algorithm
	4.1 Computing Top-k Eigenvectors F
	4.2 Computing Binary NCI Y
	4.3 Effective NCI Initialization
	4.4 Complete bold0mu mumu ACMinACMinACMinACMinACMinACMin Algorithm and Analysis

	5 Experiments
	5.1 Experimental Setup
	5.2 Efficiency Evaluation
	5.3 Quality Evaluation
	5.4 Convergence Analysis of bold0mu mumu ACMinACMinACMinACMinACMinACMin

	6 Related Work
	7 Conclusions
	Acknowledgments
	A Proofs
	References

