
YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs

Prakhar Ganesh1∗, Yao Chen1*, Yin Yang2, Deming Chen3, Marianne Winslett3
1Advanced Digital Sciences Center, Singapore

2College of Science and Engineering, Hamad Bin Khalifa University, Qatar
3University of Illinois at Urbana-Champaign, USA

{prakhar.g, yao.chen}@adsc-create.edu.sg, yyang@hbku.edu.qa, {dchen, winslett}@illinois.edu

Abstract

Performance of object detection models has been grow-
ing rapidly on two major fronts, model accuracy and ef-
ficiency. However, in order to map deep neural network
(DNN) based object detection models to edge devices, one
typically needs to compress such models significantly, thus
compromising the model accuracy. In this paper, we pro-
pose a novel edge GPU friendly module for multi-scale fea-
ture interaction by exploiting missing combinatorial con-
nections between various feature scales in existing state-of-
the-art methods. Additionally, we propose a novel transfer
learning backbone adoption inspired by the changing trans-
lational information flow across various tasks, designed to
complement our feature interaction module and together
improve both accuracy as well as execution speed on var-
ious edge GPU devices available in the market. For in-
stance, YOLO-ReT with MobileNetV2×0.75 backbone runs
real-time on Jetson Nano, and achieves 68.75 mAP on Pas-
cal VOC and 34.91 mAP on COCO, beating its peers by
3.05 mAP and 0.91 mAP respectively, while executing faster
by 3.05 FPS. Furthermore, introducing our multi-scale fea-
ture interaction module in YOLOv4-tiny and YOLOv4-tiny
(3l) improves their performance to 41.5 and 48.1 mAP re-
spectively on COCO, outperforming the original versions
by 1.3 and 0.9 mAP.

1. Introduction
Object detection is one of the most fundamental prob-

lems in computer vision, which does both localisation and
classification of various objects in an image or a video.
Due to its foundational nature, object detection has numer-
ous applications across various domains like unmanned au-
tonomous vehicle (UAV) [46], medical imaging [12], iden-
tity verification [45], robot navigation [61, 44], sports analy-
sis [20], etc. and has been adapted into more complex prob-

*Both authors contributed equally to this research.

lem statements like object tracking [58], action recognition
[1], face recognition [32], etc. Many of these applications
require highly accurate real-time feedback.

Object detection has seen major advancements in recent
years both in accuracy as well as efficiency due to the adop-
tion of deep learning algorithms [3, 29]. A majority of re-
search in efficient object detection is dominated by single-
stage object detection models that do both localisation and
classification in the same network [2, 9, 49], and focuses
on real-time execution using Desktop GPUs, like YOLOv4
[2], EfficientDet [49], ScaledYOLOv4 [51], etc. However
the execution speed of such models (measured in frames per
seconds or FPS) drops dramatically on edge devices due to
their high computational requirement[62].

Real-time object detection is a vital functionality for
modern end-node IoT devices, which due to their discon-
nection to a centrally located computing platform, do not
pack large amounts of computing power and face stricter
power supply and latency constraints. However, bringing
the power of computing directly to such devices where the
data is being collected or consumed, can help us save the
data transfer and high computational costs, and improve
on response time and other bandwidth issues that would
arise in case of an off-location computing. While most
of the recent work in the field of lightweight computer vi-
sion focuses on reducing the model size and computations
[6, 14, 48], it is important to note that these improvements
do not directly translate into a faster model. In fact, using
these metrics of comparison without executing the model
on target device can lead to sub-optimal design [33, 38].

Multi-scale feature interaction is at the heart of modern
object detection models [27, 30, 49]. However, with the
increasing complexity of these feature interaction modules,
the trade-off between efficiency and accuracy is saturating
(see Table 3), leaving the need for an innovative feature in-
teraction method. Since most existing methods focus on
some combination of the top-down on bottom-up approach
to feature collection, these paths leave out a number of
possible inter-scale interactions between non-adjacent fea-

ture scales that can significantly improve feature refinement
for further processing. Additionally, existing feature inter-
action methods are constrained by the number of output
scales, thus missing out on important low-level features.

The direct adoption of transfer learning backbone from
classification to detection has been a topic of debate for a
long time [67], with a number of research papers even cre-
ating their own backbones designed and trained directly on
object detection datasets [55, 57]. The increasingly task-
specific nature of later layers in a backbone has also been
studied extensively [60], and thus directly using pre-trained
backbone during transfer learning is clearly not the best
adoption of expert knowledge available at our disposal. A
more effective backbone adoption is required to achieve the
best trade-off between accuracy and efficiency.

In this work, we design a raw feature collection and re-
distribution module along with an improved truncated back-
bone adoption during transfer learning that is compatible
with various feature extraction backbones and detection
heads, and improves both model’s execution speed as well
as accuracy on edge GPUs. Our contributions include:

• A lightweight raw feature collection and redistribution
(RFCR) module that efficiently combines multi-scale fea-
tures, compatible with various backbones and detection
heads. Additionally, the feature collection of our RFCR
module is independent of the number of output scales in
the detection head, facilitating better feature interaction.

• An extensive experimental analysis of the importance of
individual transfer learning layers, together with a trunca-
tion method for improved model efficiency. Our trunca-
tion and RFCR module complement each other, allowing
us to create faster and more accurate detection models.

• An in-depth ablation study with on-device execution la-
tency experiments for edge GPUs, instead of other indi-
rect metrics like MFLOPs or model size, thus providing
an accurate comparison of various competing designs.

2. Background
Convolutional Neural Networks (CNNs) in the last

decade have made several advancements in the direction of
lightweight components which benefits both the feature ex-
traction backbone as well as the head of an object detection
model. We elaborate the details in the following.

2.1. Single-stage Object Detection

A modern single-stage object detection model comprises
of two components, a feature extractor usually pre-trained
on ImageNet [41] and an object detection head responsi-
ble for the final output. While CNNs are the go-to choice
for feature extraction models, there does exist some work
on the exploration of other forms of feature extractors, e.g.,

extreme learning machines (ELM) [59], motion probabil-
ity maps [43], etc.. Single-stage object detection models
can be further divided based on the detection head they use
into anchor-based or anchor-free models. Heatmap-based
detection models like CornerNet [21], CenterNet [7], etc.
are common examples of anchor-free models. However,
these models require computationally expensive backbones
[35] as they rely on keeping high resolution information
of the input image intact. Anchor-based detection models
on the other hand are the lighter alternatives. For example,
YOLOv3 detection head [10] is one of the most commonly
used detection head for edge devices, and allows easy inte-
gration of lightweight backbones [9, 55, 37, 2, 51].

2.2. Building Blocks

A large section of research in real-time object detection
models have been devoted to improving the basic building
blocks of CNNs. The traditional CNN layers contain a large
number of parameters as well as computations, forcing most
such real-time detection models to be significantly shallow
networks [9, 10]. Decoupling 2D convolution into depth-
wise separable and pointwise (1×1) convolutions is a com-
mon technique to make networks lighter [37, 16, 49, 64].
Further reducing the number of channels using 1×1 convo-
lutions before applying the intended convolution gave birth
to the idea of fire modules [19] and have been adapted in
various lightweight detection models [9, 22, 24, 54, 56].

However, using multiple consecutive pointwise convolu-
tions to reduce the computational cost of the information
flow infringes on an essential rule of designing fast deep
learning models, i.e., network fragmentation [33]. Network
fragmentation is a phenomena in which a heavier operation
is fragmented into multiple lightweight operations, and sig-
nificantly hurts the model’s execution speed as it interferes
with its internal degree of parallelism [33]. For example,
MobileDets [57] discovered that grouped pointwise convo-
lutions are not well executed on GPU devices, while Shuf-
fleNetV2 [33] found that pointwise convolutions are fastest
when number of input and output channels are the same.

The final feature extraction backbone is formed by com-
bining one or more of the building blocks mentioned above.
A number of works have even utilized Neural Architecture
Search (NAS) to build their own backbones and detection
models [57, 55]. However, these models miss out on trans-
fer learning information present in other pre-trained back-
bones [23, 25]. On the other hand, backbones pre-trained
on existing datasets might contain classification task spe-
cific features [26, 57], which can add an unnecessary bur-
den of feature calculation. Thus, an efficient adaptation of a
pre-trained backbone from classification to object detection
also plays a major role in the model’s final performance.

2.3. Multi-scale Feature Fusion

Multi-scale feature interaction is a vital part of the ob-
ject detection head, both in single-stage as well as two-
stage object detection models. Existing methods of feature
interaction take some combination of either the top-down
or bottom-up approach for the flow of information across
multi-scale features [17, 27, 30, 34, 36, 49, 18, 65]. Feature
Pyramid Networks (FPN) [27] were the first to create a top-
down path from high-level feature scales towards low-level
feature scales, with the purpose of using well processed
deeper features to help improve the accuracy of detection
layers using shallower features. Path Augmentation Net-
works (PANet) [30] took it a step further and showed that
an additional bottom-up path can help further improve the
detection accuracy of high-level features.

Building on the success of FPN and PANet, NAS-FPN
[4, 11] attempted to find the optimal paths of information
flow between various multi-scale features. Since such ar-
chitecture search based models are designed specifically
for certain datasets and backbone networks, it is difficult
to generalise them to a wider range of applications. How-
ever, these searches reveal interesting trends that can help us
learn more about the inherent requirements of such models.
NAS-FPN designs revealed the presence of direct connec-
tions between various feature scales not adjacent to each
other, showing that the flow of information only through
adjacent scales might become convoluted and warrants the
need of such shortcut connections. Similarly, NAS-FPN
also revealed the importance of repeatedly following the
top-down and bottom-up path that was later adopted by
BiFPN [49] to further improve model accuracy.

Not only the path taken to combine multi-scale features
together, but a lot of work have also been done on how
various features are combined. While most existing work
simply concatenates feature maps from multiple scales to-
gether, weighted or attention-based fusion of features have
also been proposed [23, 49] to better highlight more im-
portant feature scales. Another aspect of fusing features is
bringing them to a common scale. Simpler solutions for this
includes upsampling or downsampling one of the feature
scales to match the other. However, this can entail a local
positional mismatch between various scales, and thus mul-
tiple ways have also been explored to process the features
before and after fusion to facilitate better flow of informa-
tion across various scales [50, 61, 5].

3. Proposed Solution

In this section, we introduce a class of object detection
models, YOLO-ReT, which uses our RFCR module and
transfer learning inspired backbone truncation to improve
both accuracy and efficiency on edge GPUs.

3.1. Raw Feature Collection and Redistribution

We first introduce our raw feature collection and redis-
tribution (RFCR) module. Following our discussion in Sec-
tion 2.3, we look to strengthen the raw features provided
by the backbone using an improved feature interaction net-
work to increase the detection accuracy, without causing
any significant harm to the execution speed. While we focus
specifically on detection in this paper, our RFCR module
can be generalized to feature interaction for similar tasks.

Existing methods of multi-scale feature interaction can
be broken down into some combination of the top-down and
bottom-up approaches which focuses on only two adjacent
feature scales at a time. This misses out on a large num-
ber of possible combinatorial pairs and makes the propaga-
tion of information between distant feature scales inefficient
[4, 11]. Furthermore, when repeatedly using the top-down
and bottom-up paths like in BiFPN [49], e.g., moving from
BiFPNx2 to BiFPNx3, the detection accuracy of the model
starts to saturate (see Table 3 for details).

Here, inspired by non-adjacent feature scale connection
in NAS-FPN [4, 11], we propose a lightweight feature col-
lection and redistribution module which fuses raw multi-
scale features from the backbone together and then redis-
tributes it back to each feature scale. Thus feature maps
from each scale now contain direct connections from all
the other scales. Such a layer does not involve any heavy
computations or parameters, however allows a direct link
between every pair of feature scales, as shown in the Fig-
ure 1. It should be noted that our RFCR module can-
not replace the meticulousness that other feature aggrega-
tion methods provide, but instead we aim to provide an ex-
tremely lightweight feature processing before passing them
to other multi-scale feature fusion methods, providing or-
thogonal improvements in accuracy.

Additionally, our module design allows us independence
from the number of output scales in the detection head, as
there are no constraints between the number of input and
output features to our RFCR module. For example, despite
YOLOv3 detection head having 3 output scales, we can use
four different backbone features (3 features same as the out-
put scales, with a fourth shallower feature ’shortcut’) during
feature collection stage, allowing us to utilize more fine-
grained low-level features to improve model performance
[53]. Similarly, even for detection heads with only 2 output
scales like in YOLOv4-tiny [51], detection features are en-
riched by the multiple low-level features with the adoption
of our RFCR module (see Section 4.4.1).

As discussed in Section 2.3, the manner of feature fusion
is as important as the aggregation path. In order to keep the
additional latency overhead to a minimum, we pass the raw
features during collection through a single 1x1 convolution,
and use a simple weighted sum to fuse features together.
We pass the fused feature map through a mobilenet convo-

Detection HeadTruncated Backbone

…...

Truncated
Last CNN

Layers

I

I/4

I/8

I/16

I/32

Raw Feature Collection and Redistribution Module

P

P

P

P

+ MB
5x5

Final
Outputs

Shortcut
from

shallow
layer

= MaxPool = Upsample

= Pointwise ConvP

= Weighted Sum+
= MBConv Block with 5x5 kernelMB

5x5

= Concat

‘Detection
Neck’

(Eg., FPN,
PANet,
BiFPN
etc.)

Output
Layers

C

C

C

C

Figure 1. Complete Architecture of YOLO-ReT.

lution block (MBConv), which is then redistributed back to
various scales. Such a design allows us to keep the network
fragmentation to a minimum, since our RFCR module can
be represented with just four layers, a 1x1 convolution, a
weighted sum and two layers in the MBConv block, along
with upsampling and downsampling layers as required. The
parallel collection and redistribution of features can also be
easily optimized for faster execution.

When fusing features from different scales, naive upsam-
pling and downsampling can cause inconsistent semantics
and local positional mismatch [5]. Thus, we propose in-
creasing the receptive field of the feature fusion layer by us-
ing a 5x5 kernel instead of the conventional 3x3 or 1x1, to
help improve the detection accuracy of the model with neg-
ligible affect on its execution latency. We found increasing
the kernel to 7x7 did not benefit the performance further.

3.2. Backbone Truncation

Most state-of-the-art lightweight image classification
models [33, 42, 48, 63] attempt to keep the number of chan-
nels to a minimum by gradually increasing them after every
few convolution blocks. However, towards the end, even
these models start rapidly expanding the number of chan-
nels after every block in an attempt to represent features
more clearly before the final fully connected layer [14, 47].
Not only are these last CNN layers the most computation-
ally expensive and heaviest part of the backbone (see the
spacing between datapoints in Figure 2), but since they are
used to create a better representation for the final classifica-
tion, these layers mainly contain task specific features.

The importance of transfer learning from classification
models has been questioned before, with certain papers
even designing specialised backbones for detection [57, 55].
This is based on the intuition that the translational infor-
mation flow (i.e. across height and width of the image)
through consecutive CNN layers varies across tasks. For
example, classification models do not preserve spatial infor-
mation and might accumulate to a spatially coarse feature.

On the other hand, detection models attempt to keep the spa-
tial information intact, required for a fine-grained detection
output. We identify that the transfer learning capabilities of
the initial layers of the feature extraction backbone are quite
vital, and it is the last layers that do not provide critical in-
formation for the detection/recognition.

We test the importance of individual backbone con-
volution layers with a detailed analysis of the transfer
learning capabilities of various feature extraction back-
bones, complete with PANet [30] feature aggregation path
and YOLOv3 [10] detection head. We experiment with
three commonly used backbones, MobilenetV2 (×0.75 and
×1.4) and EfficientNet-B3 for our experiments (see Sec-
tion 4.1 for more details) and divide the backbone into vari-
ous blocks, which in this case are MBConv blocks for Mo-
bileNetV2 and MBConvSE blocks for EfficientNet. Next,
we gradually increase, from shallower towards deeper, the
number of blocks which are initialised using pre-trained
weights from ImageNet dataset while the rest are initialised
randomly similar to the detection head, and trained each in-
dividual model to convergence (see Section 4.1 for the train-
ing setup). The collected results can be seen in Figure 2.

It can be noted from the figure, as we increase the portion
of feature extraction backbone initialised with pre-trained
weights, the model performance improves, emphasizing the
importance of transfer learning. However, around the 60%
mark the performance starts to deteriorate and fluctuate.
This shows that initializing the last layers of feature extrac-
tors with transfer learning weights from ImageNet actually
damages the performance as compared to random initializa-
tion, possibly because of being stuck in a local minima due
to the task-specific nature of these layers.

Since these last layers hold no transfer learning impor-
tance, they can be analysed purely from an architecture
viewpoint. As can be seen in Figure 2, these last 2 or 3
layers contain over 40% of the weights due to an extreme
expansion of number of channels not relevant for object de-
tection. Thus, we propose using a truncated version of var-

0 20 40 60 80 100
% of backbone initialised with pre-trained weights

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

m
AP

 (0
.5

) o
n

Pa
sc

al
 V

OC 57%

59%

59%

MobileNetV2 x 0.75
MobileNetV2 x 1.4
EfficientNet-B3

Figure 2. Transfer Learning Curve.

ious feature extraction backbones for the final object detec-
tion model, presenting it as a better alternative than reducing
the scaling factor. We use the results from Figure 2 to find
the point of truncation, i.e., we truncate the last two blocks
from both MobileNetV2 versions, and the last three blocks
from EfficientNet when we adopt them as backbones.

4. Evaluations
We evaluate our proposed solution using mean average

precision [28] on multiple datasets as well as FPS achieved
on various edge GPU devices. A thorough ablation study
of our proposed RFCR module and backbone truncation
and comparison of our model’s performance against vari-
ous real-time object detection models is conducted.

4.1. Evaluation Setups

Feature Extraction Backbone. The balance of execution
speed and accuracy of the feature extraction backbone is
crucial to the final performance of the detection model due
to the transfer learning capability it offers [2, 7, 49]. As dis-
cussed in the Section 2.2, the device friendliness together
with the theoretical computation and model size are all
important factors that affect the model’s execution speed.
Instead of theoretically modeling the impact of these fac-
tors, we directly collect the FPS of various feature extrac-
tion backbones on Jetson devices in Table 1. Based on
the table, we focus on three commonly used lightweight
backbones, MobilenetV2 (×0.75), MobilenetV2 (×1.4) and
EfficientNet-B3 for our ablation study.
Lightweight Detection Layers. We use feature aggrega-
tion path proposed by PANet [30] and YOLOv3 detection
head [10]. Instead of traditional convolution blocks as in
PANet, we chose single 1x1 pointwise convolution layers
[15] for all forms of connections between various feature
levels. All features are passed through a single MBConvSE
block [48] before every feature aggregation path. We also

Backbone Depth Acc. FPS Size Comp.Nano NX AGX (MB)
ResNet50 [13] 177 74.9% 33.44 102.14 166.17 97.8 3989

MblNetV2 x 1.4 [42] 157 74.7% 47.64 129.96 188.64 23.5 588
DarkNet19 [39] 62 72.9% 48.37 115.07 187.25 79.5 2764
DarkNet53 [39] 187 77.2% 20.81 71.53 142.99 158 7172

CSPDarkNet53 [52] 418 77.2% 20.60 82.49 153.08 109 5038
EfficientNet-B0 [48] 250 77.1% 36.91 112.09 177.97 20.4 396
EfficientNet-B3 [48] 407 81.6% 17.97 74.48 134.94 47.1 1007

Table 1. Backbone accuracy (ImageNet Top-1) and FPS

do all feature refining during feature aggregation, and again
use only a single 1x1 pointwise layer for converting the final
feature map into an object detection output.
Dataset and Evaluation Metrics. We choose Pascal VOC
[8] and COCO [28] datasets for their popularity for similar
tasks. Pascal VOC contains a total of 16,551 images, with
20 object classes and an average of 2.4 bounding boxes per
image. COCO is a larger dataset that contains 117,264 im-
ages with 80 object classes and has an average of 7.4 bound-
ing boxes per image. We conduct all ablation studies on
Pascal VOC, while the final comparison with other state of
the art lightweight object detection models in literature are
on both datasets. We use Pascal VOC 2007 and 2012 train-
ing dataset together for training and compare results on the
2012 test split. For COCO, we use the train and validation
splits of COCO 2017 dataset. For Pascal VOC, we use the
default IoU threshold of 0.5, while for COCO we provide
various detailed metrics as proposed by the dataset [28]. We
also compare the runtime FPS of various models on Jetson
Nano, Jetson Xavier NX and Jetson AGX Xavier.
Training Details. We use two forms of data augmentation
during training, (i) geometric augmentations like random
crop, rotation, flip, resize etc., and (ii) photometric augmen-
tations like HSV adjustment, brightness adjustment etc. We
use self-adversarial training [2] along with a cosine learn-
ing rate decay [31] for best results. For localization, we use
GIoU loss [40] rather than the other alternatives (CIoU[66],
MSE loss). For training, we first freeze the layers which are
initialized using transfer learning weights and train for 100
epochs with a starting learning rate of 0.001. Next, we un-
freeze all the layers and fine-tune the model for 150 epochs
on a smaller starting learning rate of 0.0001. We do all our
ablation studies on 320x320 input resolution, but we also
train 224x224 and 416x416 models for final comparison.
Device Setup. For ablation study, all models together with
the baselines are implemented on three Jetson devices for
FPS calculation. We use TensorRT based FP16 optimiza-
tion to further speed up the execution. All models are exe-
cuted with batch size = 1 as we are targeting real-time ap-
plications. We process 10,000 images and take the average
execution time for FPS calculations. We also provide FPS
values for TensorRT based INT8 optimizations, to provide
a fair comparison against baseline models designed specifi-

Complete Backbone Truncated Backbone
x

AP 50 FPS
AP 50 FPS

Nano NX AGX Nano NX AGX
1.4 69.88 19.96 62.58 90.63 69.67 24.58 67.38 95.19

MblNetV2 1.0 69.40 24.85 67.92 93.20 68.87 29.32 73.87 98.67
(width = x) 0.75 68.67 28.16 73.25 99.75 66.58 34.02 77.67 103.77

0.5 63.94 35.18 81.05 117.52 61.27 39.97 86.13 124.27
B3 72.05 9.69 45.72 73.15 72.28 11.24 49.72 78.61

Efficient- B2 71.84 12.44 50.86 80.08 71.92 13.45 55.61 82.47
-Net-x B1 71.67 13.34 52.31 82.19 71.59 14.62 57.52 86.22

B0 71.24 18.27 60.97 95.96 70.98 19.08 64.34 99.95

Table 2. Comparing Width reduction vs Depth reduction

cally for integer computations [55]. It should be noted that
Jetson Nano does not have tensor cores to support INT8
based optimization, and thus such models do not have any
advantage over their floating point counter-parts on Jetson
Nano. Additionally, the FPS values reported here might
differ from the original reported values for various models,
which can be attributed to TensorRT optimizations not per-
formed, prediction box post-processing time not included
or a bigger batch size used by certain works in literature.

4.2. Ablation Study

Following the steps to construct the final detection
model, we first start with the backbone truncation and then
integrate our RFCR module for final comparison.

4.2.1 Truncated feature extraction backbone

We compare two ways of compressing the MobileNetV2
and EfficientNet backbones, which are reducing the scaling
factor (or width multiplier for MobileNetV2) and truncat-
ing the last parameter heavy layers, and collect the results
in Table 2. It can be noted that the truncated versions of Ef-
ficientNet are able to outperform their counterparts, both in
terms of accuracy as well as FPS, emphasizing on the nega-
tive impact of classification task specific backbone features.

For MobileNetV2, when comparing models with similar
FPS, the one with the truncated backbone performs better
than the the one with smaller scaling factor. e.g., when com-
paring truncated backbone MobileNetV2x1.4 with com-
plete backbone MobileNetV2x1.0, they both provide sim-
ilar FPS while the former one provides 0.27 better mAP.
This attributes to the fact that reducing the width multiplier
reduces the number of channels uniformly across all the lay-
ers while truncating the backbone only removes the features
from last layers. This difference is exaggerated even more
for lighter models on low power devices. For example,
truncated backbone at width 0.75 for MobileNetV2 gives
similar FPS to the complete backbone at width 0.5 (34.02
and 35.18 respectively on Jetson Nano), yet provides a 2.64
points improvement in mAP. Clearly, as we move towards
real-time performing models, using a truncated backbone

Feature Without RFCR module With RFCR module
Backbone Aggr.

AP 50 FPS
AP 50 FPS

Path Nano NX AGX Nano NX AGX
None 59.92 38.24 80.17 126.42 63.97 36.93 78.38 119.41
FPN 64.15 37.82 78.42 111.02 66.11 36.33 76.95 101.94

MblNetV2 PANet 66.58 34.02 77.67 103.77 68.75 33.19 71.64 95.97
x 0.75 BiFPNx1 66.29 34.81 78.04 103.47 66.65 33.78 72.17 95.70

BiFPNx2 66.69 32.98 76.10 101.78 66.83 31.43 75.61 99.40
BiFPNx3 66.78 31.54 74.45 100.37 66.90 30.72 73.68 98.27

None 68.15 28.21 72.97 110.24 69.26 26.50 71.81 106.43
FPN 69.02 26.06 69.69 103.18 69.95 24.19 66.23 98.73

MblNetV2 PANet 69.67 24.58 67.38 95.19 70.35 23.01 65.37 93.49
x 1.4 BiFPNx1 69.50 25.26 67.42 95.55 70.14 23.60 65.79 93.71

BiFPNx2 69.84 23.25 65.77 92.96 70.53 22.18 64.43 92.03
BiFPNx3 69.87 20.99 62.81 91.50 70.61 20.33 62.17 90.93

None 71.24 12.21 62.31 87.60 72.37 11.94 59.84 84.58
FPN 71.60 11.75 56.04 85.84 72.63 11.34 53.28 82.54

Efficient- PANet 72.28 11.24 49.72 78.61 72.96 10.96 47.07 75.61
Net-B3 BiFPNx1 72.07 12.12 47.70 79.28 72.80 11.71 45.02 75.39

BiFPNx2 72.39 11.15 43.53 76.22 73.01 10.72 42.24 72.89
BiFPNx3 72.51 9.92 39.91 72.55 73.08 9.38 38.25 67.99

Table 3. Effectiveness of RFCR module

provides a more accurate and faster feature extraction net-
work than the complete backbone.

4.2.2 Raw feature collection and redistribution

We now evaluate our raw feature collection and redis-
tribution module, combined with various truncated back-
bones as well as feature aggregation paths adapted with our
lightweight detection layers, in Table 3. Our method pro-
vides a consistent improvement in performance, irrespec-
tive of the backbone or the feature aggregation path that fol-
lows it. While this also comes at the cost of slight drop in
FPS, overall the trade-off between the two is favorable for
us, and thus the feature collection and redistribution module
serves as a profitable lightweight addition to the model.

On taking a deeper dive into Table 3, we can notice that
the effect of our feature redistribution is significantly more
when there is no other feature aggregation method follow-
ing it. This can be attributed to the fact that in the ab-
sence of any interaction between multi-scale features, ex-
cept through the backbone itself, such a redistribution pro-
vides the much needed feature interaction. However, even
with BiFPNx3, our method still gets a noticeable boost in
performance, showing the importance of shortcut connec-
tions between non-adjacent layers.

Finally, we bring all methods discussed above together
to do a combined component ablation study. The results
are collected in Table 4. We start with the MobileNetV2
(×0.75) backbone for Jetson Nano, MobileNetV2 (×1.4)
backbone for Jetson Xavier NX and EfficientNet-B3 back-
bone for Jetson AGX Xavier, along with a PANet fea-
ture aggregation based YOLOv3 object detection head and
lightweight detection layers. Next, we test our RFCR mod-
ule with and without truncating the backbone. While it is
clear that RFCR module performs well in both scenarios,

(a) Multi-Scale Raw Features

(b) Multi-Scale Raw Features passed through our RFCR Module

(c) Multi-Scale Raw Features passed through our RFCR module and PANet

(d) Multi-Scale Raw Features passed directly through PANet without the RFCR Module

Figure 3. Qualitative study with intermediate heatmaps. For all sets of three heatmaps, the original resolution of the feature maps from
low-level to high-level features, i.e., left-to-right, is 40x40, 20x20 and 10x10 respectively, for a 320x320 input image.

the drop in FPS for model with complete backbone is more
as compared to the one with truncated backbone. This is
due to the fact that the complete backbone has heavier lay-
ers towards the end, which makes the following feature ag-
gregation layers heavier too.

As discussed in Section 3.1, we also introduce additional
’shortcut’ connections in our RFCR module independent of
the detection head’s output scales. We notice that this addi-
tional ’shortcut’ from shallower layers of the backbone fur-
ther improves its accuracy, emphasizing the importance of
low-level features for accurate detection tasks and the free-
dom our design provides in using more input features from
the backbone than the number of output scales. Overall, we
are able to both speed up the execution and improve accu-
racy by combining backbone truncation and RFCR module.

4.3. Qualitative Analysis

We also conduct a qualitative assessment of our RFCR
module by visualizing various intermediate feature maps
using our MobileNetV2x0.75 based model. We do a chan-
nel wise max pooling of the feature maps and then plot the
obtained heatmaps scaled back to the original input image,
as shown in Figure 3. For all 3 images, we notice that the
raw feature maps (a) directly from the backbone are very
noisy. While low-level raw features create a better bound-
ary around the object, the attention patterns are discontinu-
ous due to their smaller receptive field. On the other hand,
high-level raw features create an inaccurate boundary which
sometimes extends well beyond the object. However, just
by doing a simple feature collection and redistribution, we
obtain feature maps (b), in which we notice that various
scales of features work together in harmony to obtain a bet-
ter boundary of attention around the object. We notice sim-
ilar behavior between final feature maps (c) obtained right

Baseline +Truncate +RFCR +Shortcut AP 50 FPS
✗ ✗ ✗ 68.67 28.16

MobileNetV2 x 0.75 ✓ ✗ ✗ 66.58 34.02

on Jetson Nano ✗ ✓ ✗ 69.50 26.97
✓ ✓ ✗ 68.40 33.35
✓ ✓ ✓ 68.75 33.19
✗ ✗ ✗ 69.88 62.58

MobileNetV2 x 1.4 ✓ ✗ ✗ 69.67 67.38

on Jetson NX ✗ ✓ ✗ 70.56 62.11
✓ ✓ ✗ 70.21 65.91
✓ ✓ ✓ 70.35 65.37
✗ ✗ ✗ 72.05 73.15

EfficientNet-B3 ✓ ✗ ✗ 72.28 78.61

on Jetson AGX ✗ ✓ ✗ 72.37 72.90
✓ ✓ ✗ 72.58 75.72
✓ ✓ ✓ 72.96 75.61

Table 4. Ablation study

before the detection head, and final feature maps (d) ob-
tained from a separately trained model which has the same
architecture but without RFCR module, even though fea-
ture maps (d) are obtained after feature aggregation through
PANet, which demonstrates that the RFCR module played
an important role in filtering out the noise from raw features.

4.4. Comparison with State-of-the-art Models

We build models based on selected backbones using
truncation and the RFCR module, and then compare them
with 3 different input image resolutions to various state-of-
the-art real-time object detection models with the same set-
tings, as shown in Table 5. As expected, smaller input res-
olution results in a faster but less accurate detection model.
We also provide detailed evaluation on COCO dataset in Ta-
ble 6, however the scope of comparison is limited as not all
state-of-the-art models provide such detailed results.

When comparing on Jetson Nano, we find that our

Model Input Size FPS AP 50

Res. (MB) Nano NX AGX VOC COCO
Tiny-YOLOv3 [10] 416 34.9 27.36 66.55 91.71 61.30 33.10
Tinier-YOLO [9] 416 8.9 30.14 68.73 92.09 65.70 34.00
YOLO Nano [55] 416 4.0 13.62 54.03‡ 85.81‡ 69.10 –

YOLO-Fastest [37] 320 1.3 42.41 76.13 126.82 61.02 –
YOLO-Fastest XL [37] 320 3.5 27.93 61.33 108.76 69.43 32.45

416 5.2 19.87 58.24 71.16 72.39 36.44
YOLO-ReT-M0.75 320 5.2 33.19 71.64 95.97 68.75 34.91

224 5.2 55.16 84.10 134.87 60.77 30.76
416 12.3 13.17 46.07 66.23 73.32 36.52

YOLO-ReT-M1.4 320 12.3 23.01 65.37 93.49 70.35 35.77
224 12.3 43.16 84.32 113.94 62.91 31.63
416 28.3 6.35 28.83 49.07 76.49 39.12

YOLO-ReT-EB3 320 28.3 10.96 44.59 75.61 72.96 36.51
224 28.3 18.57 54.87 93.55 65.52 33.11

‡ Calculated with INT8 optimization

Table 5. Comparison with other state-of-the-art models

Model Input COCO
Res. AP AP 50 AP 75 AP s APm AP l

Tiny-YOLOv3 [10] 416 15.3 33.1 12.4 4.4 15.2 25.1
Tinier-YOLO [9] 416 17.0 34.0 15.7 4.8 17.3 26.8

YOLO-ReT-M0.75 320 18.4 34.9 17.3 5.4 18.7 28.9
YOLO-ReT-M1.4 320 19.1 35.8 18.4 5.8 19.6 30.2
YOLO-ReT-EB3 320 19.7 36.5 19.3 6.3 20.3 31.1

Table 6. Evaluation on COCO dataset

model YOLO-ReT-M0.75 at 320x320 resolution outper-
forms Tinier-YOLO by 3.05 mAP on Pascal VOC and 0.91
mAP on COCO, while executing faster by 3.05 FPS. On
Jetson Xavier NX, our model YOLO-ReT-M1.4 at 320x320
resolution outperforms YOLO-Fastest-XL by 0.92 mAP
on Pascal VOC and 3.34 mAP on COCO, while execut-
ing faster by 4.02 FPS. Even though our YOLO-ReT-EB3
model at 416x416 resolution is able to push for the best per-
formance while still executing real-time on Jetson Xavier
AGX, it should be noted that at similar FPS, MobileNetV2
based models outperform EfficientNet based models.

4.4.1 Comparison with YOLOv4-tiny

The state-of-the-art in object detection is being pushed con-
stantly, with multiple parallel works being published at any
moment. YOLOv4-tiny [51] has done the same for real-
time object detection on edge devices, using novel training
methods as well backbone scaling and customization for
an improved object detection model that provides signifi-
cantly better performance than any existing SOTA. While
this work was done in parallel with ours, the improve-
ments are undeniably significant to be ignored. Thus, we
directly introduce our RFCR module into YOLOv4-tiny
and YOLOv4-tiny (3l) without backbone truncation as these
models are designed specifically for object detection and are
trained from scratch without using transfer learning [51].
We still use 4 inputs to our feature collection, and redis-
tribute them based on the number of output scales present

Model Input FPS COCO
Res. Nano AP AP 50 AP 75

YOLOv4-tiny 416 29.55 21.7 40.2 22.5
YOLOv4-tiny+RFCR 416 27.81 22.9 41.5 23.3
YOLOv4-tiny (3l) 608 24.87 28.7 47.2 29.7
YOLOv4-tiny (3l)+ RFCR 608 21.40 29.3 48.1 30.5

Table 7. Comparison with YOLOv4-tiny [51]

in the model, i.e. 2 for YOLOv4-tiny and 3 for YOLOv4-
tiny (3l). We execute both models on Jetson Nano device
since it has the least resource compared to the other two
platforms. The final results are collected in Table 7.

We find that the RFCR versions of both these models
are able to outperform their counterparts in terms of accu-
racy. Looking deeper, we find that our RFCR module pro-
vides larger improvement for YOLOv4-tiny, as compared to
YOLOv4-tiny (3l). This is expected, as YOLOv4-tiny only
has 2 output scales, which further necessitates multi-scale
feature interaction, and helps us demonstrate the compati-
bility of our module with various detection models.

5. Conclusion and Future Work
This paper presents a novel raw feature collection and re-

distribution (RFCR) module, and a truncated backbone for
improved transfer learning for object detection. These tech-
niques complement each other, leading to both improved ac-
curacy and efficiency for various lightweight architectures.
We believe that machine learning model designs targeting
edge GPU devices have opened up a new avenue of research
for edge computing, and can lead to a wide range of applica-
tion possibilities. Thus, further research on device specific
model optimizations and neural architecture search can help
push the technology forward effectively for real-time per-
forming models. Meanwhile, an in-depth understanding of
interactions between various features for object detection
can further enhance the information flow and is an impor-
tant aspect of improving the model accuracy while main-
taining its efficiency. In future, we aim to extend our RFCR
module to other vision domains and a larger variety of mod-
els. The source code of our design is opened to public at
https://github.com/prakharg24/yoloret.

Acknowledgement
This publication was made possible by grant AICC03-

0324-200005 from Qatar National Research Fund (a mem-
ber of Qatar Foundation), and grant MRC-05-110 from
Hamad Medical Corporation. It is also partially supported
by the National Research Foundation, Prime Minister’s Of-
fice, Singapore under its Campus for Research Excellence
and Technological Enterprise (CREATE) programme. The
findings herein reflect the work, and are solely the respon-
sibility, of the authors.

References
[1] Djamila Romaissa Beddiar, Brahim Nini, Mohammad

Sabokrou, and Abdenour Hadid. Vision-based human ac-
tivity recognition: a survey. Multimedia Tools and Applica-
tions, 79(41):30509–30555, 2020.

[2] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-
Yuan Mark Liao. YOLOv4: Optimal speed and accuracy of
object detection. arXiv preprint arXiv:2004.10934, 2020.

[3] Karanbir Singh Chahal and Kuntal Dey. A survey of mod-
ern object detection literature using deep learning. arXiv
preprint arXiv:1808.07256, 2018.

[4] Bo Chen, Golnaz Ghiasi, Hanxiao Liu, Tsung-Yi Lin,
Dmitry Kalenichenko, Hartwig Adam, and Quoc V Le.
Mnasfpn: Learning latency-aware pyramid architecture for
object detection on mobile devices. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13607–13616, 2020.

[5] Yimian Dai, Fabian Gieseke, Stefan Oehmcke, Yiquan Wu,
and Kobus Barnard. Attentional feature fusion. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 3560–3569, 2021.

[6] Xianzhi Du, Tsung-Yi Lin, Pengchong Jin, Golnaz Ghiasi,
Mingxing Tan, Yin Cui, Quoc V Le, and Xiaodan Song.
Spinenet: Learning scale-permuted backbone for recogni-
tion and localization. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11592–11601, 2020.

[7] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qing-
ming Huang, and Qi Tian. Centernet: Keypoint triplets for
object detection. In Proceedings of the IEEE International
Conference on Computer Vision, pages 6569–6578, 2019.

[8] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (VOC) challenge. International journal of computer
vision, 88(2):303–338, 2010.

[9] Wei Fang, Lin Wang, and Peiming Ren. Tinier-yolo: A real-
time object detection method for constrained environments.
IEEE Access, 8:1935–1944, 2019.

[10] Ali Farhadi and Joseph Redmon. Yolov3: An incremen-
tal improvement. In Computer Vision and Pattern Recog-
nition, pages 1804–02767. Springer Berlin/Heidelberg, Ger-
many, 2018.

[11] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn:
Learning scalable feature pyramid architecture for object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7036–7045, 2019.

[12] Abdul Mueed Hafiz and Ghulam Mohiuddin Bhat. A survey
of deep learning techniques for medical diagnosis. In In-
formation and Communication Technology for Sustainable
Development, pages 161–170. Springer, 2020.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[14] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 1314–1324, 2019.

[15] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[16] Rachel Huang, Jonathan Pedoeem, and Cuixian Chen.
YOLO-LITE: a real-time object detection algorithm opti-
mized for non-GPU computers. In 2018 IEEE Interna-
tional Conference on Big Data (Big Data), pages 2503–
2510. IEEE, 2018.

[17] Petr Hurtik, Vojtech Molek, Jan Hula, Marek Vajgl, Pavel
Vlasanek, and Tomas Nejezchleba. Poly-YOLO: higher
speed, more precise detection and instance segmentation for
YOLOv3. arXiv preprint arXiv:2005.13243, 2020.

[18] Yoo Jin Hyeok, Kum Dongsuk, and Choi Jun Won. Scarfnet:
Multi-scale features with deeply fused and redistributed se-
mantics for enhanced object detection. In 2020 25th Inter-
national Conference on Pattern Recognition (ICPR), pages
4505–4512. IEEE, 2021.

[19] Forrest N Iandola, Song Han, Matthew W Moskewicz,
Khalid Ashraf, William J Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer pa-
rameters and¡ 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016.

[20] Paresh R Kamble, Avinash G Keskar, and Kishor M Bhur-
chandi. Ball tracking in sports: a survey. Artificial Intelli-
gence Review, 52(3):1655–1705, 2019.

[21] Hei Law and Jia Deng. Cornernet: Detecting objects as
paired keypoints. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 734–750, 2018.

[22] Hei Law, Yun Teng, Olga Russakovsky, and Jia Deng.
Cornernet-lite: Efficient keypoint based object detection.
arXiv preprint arXiv:1904.08900, 2019.

[23] Ji Li and Yingdong Ma. MSPNet: Multi-level semantic pyra-
mid network for real-time object detection. In International
Conference on Image Analysis and Recognition, pages 76–
88. Springer, 2020.

[24] Wei Li, Xianghua Ma, and Tongrui Peng. A real-time
multipoint-based object detector. In 2020 5th International
Conference on Computational Intelligence and Applications
(ICCIA), pages 1–7. IEEE, 2020.

[25] Yuxi Li, Jiuwei Li, Weiyao Lin, and Jianguo Li. Tiny-DSOD:
Lightweight object detection for resource-restricted usages.
arXiv preprint arXiv:1807.11013, 2018.

[26] Zeming Li, Chao Peng, Gang Yu, Xiangyu Zhang, Yangdong
Deng, and Jian Sun. Detnet: A backbone network for object
detection. arXiv preprint arXiv:1804.06215, 2018.

[27] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2117–2125, 2017.

[28] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft COCO: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014.

[29] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie
Chen, Xinwang Liu, and Matti Pietikäinen. Deep learning
for generic object detection: A survey. International journal
of computer vision, 128(2):261–318, 2020.

[30] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia.
Path aggregation network for instance segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 8759–8768, 2018.

[31] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

[32] Chen Change Loy. Face detection. Computer Vision: A Ref-
erence Guide, pages 1–5, 2020.

[33] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In Proceedings of the European conference on
computer vision (ECCV), pages 116–131, 2018.

[34] Qi-Chao Mao, Hong-Mei Sun, Yan-Bo Liu, and Rui-Sheng
Jia. Mini-YOLOv3: real-time object detector for embedded
applications. IEEE Access, 7:133529–133538, 2019.

[35] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-
glass networks for human pose estimation. In European con-
ference on computer vision, pages 483–499. Springer, 2016.

[36] Zheng Qin, Zeming Li, Zhaoning Zhang, Yiping Bao, Gang
Yu, Yuxing Peng, and Jian Sun. Thundernet: Towards real-
time generic object detection on mobile devices. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion, pages 6718–6727, 2019.

[37] D Quiqui. Yolo-fastest. https://github.com/
dog-qiuqiu/Yolo-Fastest, 2020.

[38] Ruslan Rakhimov, Emil Bogomolov, Alexandr Notchenko,
Fung Mao, Alexey Artemov, Denis Zorin, and Evgeny Bur-
naev. Making densepose fast and light. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 1869–1877, 2021.

[39] Joseph Redmon and Ali Farhadi. YOLO9000: better, faster,
stronger. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7263–7271, 2017.

[40] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir
Sadeghian, Ian Reid, and Silvio Savarese. Generalized in-
tersection over union: A metric and a loss for bounding box
regression. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 658–666, 2019.

[41] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of
computer vision, 115(3):211–252, 2015.

[42] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018.

[43] Mohammad Javad Shaifee, Brendan Chywl, Francis Li, and
Alexander Wong. Fast YOLO: A fast you only look once
system for real-time embedded object detection in video.
Journal of Computational Vision and Imaging Systems, 3(1),
2017.

[44] Wei A Shang. Survey of mobile robot vision self-
localization. Journal of Automation and Control Engineering
Vol, 7(2), 2019.

[45] Yichun Shi and Anil K Jain. DocFace+: ID document to
selfie matching. IEEE Transactions on Biometrics, Behavior,
and Identity Science, 1(1):56–67, 2019.

[46] Ramesh Simhambhatla, Kevin Okiah, Shravan Kuchkula,
and Robert Slater. Self-driving cars: Evaluation of deep
learning techniques for object detection in different driving
conditions. SMU Data Science Review, 2(1):23, 2019.

[47] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2820–2828, 2019.

[48] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning, pages 6105–6114, 2019.

[49] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet:
Scalable and efficient object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10781–10790, 2020.

[50] Qiankun Tang, Jie Li, Zhiping Shi, and Yu Hu. Light-
det: A lightweight and accurate object detection network.
In ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages
2243–2247. IEEE, 2020.

[51] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-
Yuan Mark Liao. Scaled-yolov4: Scaling cross stage
partial network. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
13029–13038, 2021.

[52] Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu,
Ping-Yang Chen, Jun-Wei Hsieh, and I-Hau Yeh. CSPNet:
A new backbone that can enhance learning capability of cnn.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pages 390–391,
2020.

[53] Tiancai Wang, Rao Muhammad Anwer, Hisham Cholakkal,
Fahad Shahbaz Khan, Yanwei Pang, and Ling Shao. Learn-
ing rich features at high-speed for single-shot object detec-
tion. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1971–1980, 2019.

[54] Alexander Womg, Mohammad Javad Shafiee, Francis Li,
and Brendan Chwyl. Tiny SSD: A tiny single-shot detection
deep convolutional neural network for real-time embedded
object detection. In 2018 15th Conference on Computer and
Robot Vision (CRV), pages 95–101. IEEE, 2018.

[55] Alexander Wong, Mahmoud Famuori, Mohammad Javad
Shafiee, Francis Li, Brendan Chwyl, and Jonathan Chung.
YOLO nano: A highly compact you only look once convo-
lutional neural network for object detection. arXiv preprint
arXiv:1910.01271, 2019.

[56] Bichen Wu, Forrest Iandola, Peter H Jin, and Kurt Keutzer.
Squeezedet: Unified, small, low power fully convolu-
tional neural networks for real-time object detection for au-
tonomous driving. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops,
pages 129–137, 2017.

[57] Yunyang Xiong, Hanxiao Liu, Suyog Gupta, Berkin Akin,
Gabriel Bender, Yongzhe Wang, Pieter-Jan Kindermans,
Mingxing Tan, Vikas Singh, and Bo Chen. Mobiledets:
Searching for object detection architectures for mobile ac-
celerators. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3825–
3834, 2021.

[58] Rui Yao, Guosheng Lin, Shixiong Xia, Jiaqi Zhao, and Yong
Zhou. Video object segmentation and tracking: A survey.
ACM Transactions on Intelligent Systems and Technology
(TIST), 11(4):1–47, 2020.

[59] Yunhua Yin, Huifang Li, and Wei Fu. Faster-YOLO: An
accurate and faster object detection method. Digital Signal
Processing, page 102756, 2020.

[60] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson.
How transferable are features in deep neural networks? Ad-
vances in Neural Information Processing Systems, 27:3320–
3328, 2014.

[61] Xiaofan Zhang, Haoming Lu, Cong Hao, Jiachen Li, Bowen
Cheng, Yuhong Li, Kyle Rupnow, Jinjun Xiong, Thomas
Huang, Honghui Shi, Wen-mei Hwu, and Deming Chen.
SkyNet: a hardware-efficient method for object detection
and tracking on embedded systems. In Conference on Ma-
chine Learning and Systems (MLSys), 2020.

[62] Xiaofan Zhang, Anand Ramachandran, Chuanhao Zhuge,
Di He, Wei Zuo, Zuofu Cheng, Kyle Rupnow, and Deming
Chen. Machine learning on fpgas to face the iot revolution.
In 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 819–826, 2017.

[63] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural net-
work for mobile devices. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
6848–6856, 2018.

[64] Haipeng Zhao, Yang Zhou, Long Zhang, Yangzhao Peng,
Xiaofei Hu, Haojie Peng, and Xinyue Cai. Mixed YOLOv3-
LITE: A lightweight real-time object detection method. Sen-
sors, 20(7):1861, 2020.

[65] Qijie Zhao, Tao Sheng, Yongtao Wang, Zhi Tang, Ying Chen,
Ling Cai, and Haibin Ling. M2det: A single-shot object de-
tector based on multi-level feature pyramid network. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 9259–9266, 2019.

[66] Zhaohui Zheng, Ping Wang, Wei Liu, Jinze Li, Rongguang
Ye, and Dongwei Ren. Distance-IoU loss: Faster and bet-
ter learning for bounding box regression. In AAAI, pages
12993–13000, 2020.

[67] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi,
Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing He. A
comprehensive survey on transfer learning. Proceedings of
the IEEE, 109(1):43–76, 2020.

