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1. INTRODUCTION

Differential privacy [Dwork etal. 2006c] is an emerging pdigm for publishing statistical
information over sensitive data, with strong and rigorousrgntees on individuals’ privacy.
Since its proposal, differential privacy has attractedergive research efforts, such as in
cryptography [[Dwork et al. 2006c], algorithms[_[Dwork et2010; [Hardtand Talwar 2010;
McSherry and Talwar 2007], database = management [Ding 20all; [Hay et al. 2010;
Lietal. 2010; |Rastogi and Nath 2010;_Xiao et al. 2010, XiaaleP010; [Peng etal. 201.3],
data mining [[Bhaskar et al. 2010; _Friedman and Schuster]20%0cial network analysis
[Rastogi et al. 2009; Hay et al. 2000; _Sala et al. 2011] andhinaclearning [[Blum et al. 2008;
Chaudhuri et al. 2011; Rubinstein et al. 2012]. The main idkdifferential privacy is to inject
random noise into aggregate query results, such that thersaty cannot infer, with high confi-
dence, the presence or absence of any given reciorthe dataset, even if the adversary knows all
other records in the dataset besideS he adversary’s maximum confidence in inferring private
information is controlled by a user-specified parameteralled theprivacy budgetGivene, the
main goal of query processing under differential privactpisnaximize the utility/accuracy of the
(noisy) query answers, while satisfying the above privaguirements.

This work focuses on a common class of queries cdlleghr counting querieswhich is the
basic operation in many statistical analyses. Similarsdgaply to other types of linear queries,
e.g., linear sums. Figuré 1(a) illustrates an examplemleict medical record database, where each
record corresponds to an individual. Figlie 1(b) shows gaetenumber of HIV+ patients in each
state, which we refer to amit counts A linear counting query in this example can be any linear
combination of the unit counts. For instancejet , x x 7, xca, w4 be the patient counts in states
NY, NJ, CA, and WA respectively; one possible linear cougtinery istyy + xnj+zca+xwa,
which computes the total number of HIV+ patients in the fdates listed in our example. Another
example linear counting query isyy /19 + xn /8 4+ x¢4/37, which calculates the weighted
average of patient counts in states NY, NJ and CA, with weiglkt according to their respective
population sizes. In general, we are given a databasewithit counts, and a batahS of m linear
counting queries. The goal is to answer all querie®@ Bunder differential privacy, and maximize
the expected overall accuracy of the queries.

Name State HIV+ State # of HIV+ patients
Alice NY Yes NY 82,700
Bob NJ Yes NJ 19,000
Carol NY Yes CA 67,000
Dave CA Yes WA 5,900
(a) Patient records (b) Statistics on HIV+ patients

Fig. 1. Example medical record database

Straightforward approaches to answering a batch of lineanting queries usually lead to sub-
optimal result accuracy. Consider processing the quer§set{q, ¢2, g3} under the:--differential
privacy definition, detailed in Section 3. One naive soluticeferred to asoise on resul{NOR),
is to process each query independently, e.g., using theataphechanism [Dwork et al. 2006c].
This method fails to exploit theorrelationsbetween different queries. Consider a batch of three
different querie; = xny + &Ny + Tca + Twa, @2 = TNy +TNJ, @3 = oa + zwa. Clearly,
the three queries are correlated singe= ¢» + ¢3. Thus, an alternative strategy for answering
these queries is to process omlyandgs, and use their sum to answer. As will be explained
in Section 3, the amount of noise added to query results adisp@non thesensitivityof the query
set, which is defined as the maximum possible total changeénygesults caused by adding or
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removing a single record in the original database. Unetifferential privacy, the sensitivity of the
query set{q2, g3} is 1, because adding/removing a patient record in Figureaffects at most one
of ¢o andgs (i.e., g2 if the record is associated with state NY or NJ, agdf the state is CA or
WA), by exactly 1. On the other hand, the query &t g2, g3} has a sensitivity of (under the:-
differential privacy definition), since a record in the aba@vstates affects both and one of;; and
3. According to the Laplace mechanism, the variance of thedddise to each query 2\? /2,
whereA is the sensitivity of the query set, amds the user-specified privacy budget. Therefore,
processingq1, 2, g3 } directly incurs a noise variance @ x 22)/¢* for each query; on the other
hand, executindqs, g3} leads to a noise variance (& x 12)/¢? for each ofg; andgs, and their
sumg; = g2 + g3 has a noise variance 62 x 2)/e* = 4/¢. Clearly, the latter method obtains
higher accuracy for all queries.

Another simple solution, referred to asise on datdNOD), is to process each unit count under
differential privacy, and combine them to answer the giveedr counting queries. Continuing the
example, this method computes the noisy countsifet, xn 7, zca andxw 4, and uses their
linear combinations to answet, g2, andgs. This approach overlooks the correlations between
different unit counts. In our exampley andx vy (and similarly,zc 4 andxy 4) are either both
present or both absent in every query, and, thus, can be seegiagle entity. Processing them as
independent queries incurs unnecessary accuracy costsratembining them. In the example,
NOD adds noise with varian@ e? to each unit count, and their combinations to ansyyeg., and
g3 have noise varianc®/¢?, 4/¢* and4/ 2, respectively. NOD’s result utility is also worse than the
above-mentioned strategy of processip@ndgs, and adding their results to answgr

In general, the query sé& may exhibit complex correlations among different queried among
different unit counts. As a consequence, it is non-triviabbtain the best strategy to answer
under differential privacy. For instance, consider théofeing query set:

g1 = 2xNng+xcA+Twa
G2 = TN+ 2xWA
q3 = TNy +2xca + 22w a

NOR is clearly a poor choice, since it incurs a sensitivitysainder thec-differential privacy
definition (e.g., a record of state WA affeafs by 1, andg, andqs by 2 each). The sensitivity
of NOD remains 1, and it answerg, g2, and g with noise variance x (22 + 1% + 12)/¢2,
2x (124-22) /% and2 x (12 +22+22) /2 respectively, leading to a sum-square error (SSE)@#>.
The optimal strategy in terms of SSE in this case computesdlsy results of) = zny /8+zw 4,
¢ = —3xNy /8 — xca andqs = xny /4 — xzy . Then, it obtains the results faf, ¢2, andgs as
follows.

Q= ¢ — g5 — 243
g2 = 2q; — qj
g = 2¢y — 2¢5

The sensitivity of the above method is also 1, because (ingdt@moving a record of state NJ,
CA and WA can only affect queries, ¢, andgq}, respectively, by at most 1; (ii) adding/removing a
record of state NY causes the resultg/fafq, andg; to change by at most 1/8, 3/8, and 1/4, respec-
tively, leading to a maximum total change of 1/8+3/8+1/4#/. introduce the formal definition of
sensitivity later in Sectioh]3. Hence, independent randoisenof varianc& x 12/e? = 2/¢% is
injected to the results of each f, ¢, andgj. Their combination; = ¢} — ¢4 —2¢5 thus has a noise
variance o x (124 (—1)%+(—2)?) /e? = 12/¢2. Similarly, combiningy; — ¢} to answey, andgs
as above incur a noise varianceof (2% + (—1)?)/e? = 10/e? and2 x (2% + (—2)?)/e? = 16/¢>
respectively. The SSE for querigs — g3 is thus12/e2 4 10/e? + 16/¢% = 38/¢2.

Observe that the there is no simple pattern in the query deearptimal strategy. Since there is
an infinite space of possible strategies, searching foréisedne is a challenging problem.
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Li et al. [Li et al. 2010] first formalize the above observatidi.e., answering a correlated query
set with an effective strategy) into thmatrix mechanismHowever, as we explain in Section
2.2, the original matrix mechanism lacks a practical immatation, because the solutions in
[Ciet al. 2010] for finding a good strategy are either ine#itti (which incur prohibitively high com-
putational costs for even moderately large domains), dfaotive (which rarely obtain strategies
that outperform naive methods NOD/NOR). Later, Li and Mik[&i and Miklau 2012] propose
the adaptive mechanism, which can be seen as an implenmntditihe matrix mechanism. This
method, however, still incurs some drawbacks as discussBddtiod 2.2, which limit its accuracy.
Motivated by this, we propose the first practical realizatad the matrix mechanism, called the
low-rank mechanisnLRM), based on the theory of low-rank matrix approximation. LRpplies
to bothe-differential privacy and¢;, ¢)-differential privacy, two most commonly used differeatti
privacy definitions today. We analyze the utility of LRM umdg, n)-usefulnes< [Blum et al. 2008],
a popular utility measure. Extensive experiments dematesthat LRM significantly outperforms
existing solutions in terms of result accuracy, sometimesrders of magnitude.

The rest of the paper is organized as follows. Sedflon 2 wevjmevious studies on differential
privacy. Sectiof 13 provides formal definitions for our prrl Sectioli ¥4 presents the mechanism
formulation of LRM undek-differential privacy. Sectioh]5 discusses how to solvedhgmization
problemin LRM. Sectiohl6 extends LRM to answer queries uideén-differential privacy. Section
[4 verifies the superiority of our proposal through an extemskperimental study. Finally, Section
concludes the paper.

2. RELATED WORK

Section[Z.]L surveys general-purpose mechanisms for émfodifferential privacy. Sectioh 2.2
presents two methods that are closely related to the prdmadation, namely the matrix mech-
anism and the adaptive mechanism.

2.1. Differential Privacy Mechanisms

Differential privacy was first formally presented in_[Dwoekal. 2006c], though some previous
studies have informally used similar models, elg., [Dimuat &lissim 20083]. The Laplace mecha-
nism [Dwork et al. 2006c] is the first generic mechanism fdioering differential privacy, which
works when the output domain is a multi-dimensional Eudidepace. McSherry and Talwar
[McSherry and Talwar 2007] propose the exponential meamanivhich applies to any problem
with a measurable output space. The generality of the exji@henechanism makes it an impor-
tant tool in the design of many other differentially privatigorithms, e.g./[Cormode et al. 2012;
[Xu et al. 201P; Xu et al. 201 8; McSherry and Talwar 2007].

The original definition of differential privacy is-differential privacy, which focuses on provid-
ing a strong and rigorous definition of privacy. Besides,thisother popular definition is,(6)-
differential privacy, which can be seen as an approximatgime of e-differential privacy. In many
applications, {, 0)-differential privacy provides a similarly strong priwadefinition, while enabling
simpler and/or more accurate algorithms. One basic mesimgior enforcing {, 6)-differential pri-
vacy is the Gaussian mechanism, which injects Gaussiame noithe query results calibrated to
the £, sensitivity of the queries [Dwork et al. 20064]. [Hardt anofiR2012] employk Gaussian
measurements strategy to compute the low rank approxingtb large matrices. However, (
d)-differential privacy might be unsatisfactory in certaituations. For example, [De 2012] demon-
strate that{, ¢)-differential privacy is weaker thastdifferential privacy in terms of mutual infor-
mation even wheia is negligible. The proposed solution applies to both deding of differential
privacy. We present details of these two privacy definitiorSectior 3.

Linear query processing is of particular interest in both theory and database communities,
due to its wide range of applications. To minimize the errblirear queries under differential
privacy requirements, several methods try to build a syisopithe original database, such as
Fourier transformation$§ [Rastogi and Nath 2010], wavdligo et al. 2010] and hierarchical trees

[Hay etal. 201D]. The compressive mechanism [Li et al. 20&dJices the amount of noise neces-
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sary to satisfy differential privacy, for datasets with aige representation. By publishing a noisy
synopsis undes-differential privacy, these methods are capable of ansggem arbitrary number
of linear queries. However, most of these methods obtail goouracy only when the query selec-
tion criterion is a continuous range; meanwhile, sinceghmasthods are not workload-aware, their
performance for a specific workload tends to be sub-optimal.

Workload-aware algorithms address this problem, whiclnupé the overall accuracy of a set
of given linear queries. This work falls into this categdvptable workload-aware methods include

(i) Multiplicative Weights / Exponential Mechanism (MWENMardt et al. 201P],(ii) the Matrix
Mechanism([Li et al. 2010] and (iii) the Adaptive Mechanisiohdnd Miklau 2012]. MWEM pub-

lishes a synthetic dataset optimized towards the giveratiaeery set. In particular, it provides a
beautiful theoretical bound on the maximum error of the gigaeries, which grows sublinearly to
the number of records in the dataset, and logarithmicaltiz Wfie number of queries. In practice,
however, this bound tends to be loose as it is derived fronstacase scenarios. Meanwhile, the
target problem of MWEM is different from ours, as we focus aswering a given set of linear
queries rather than publishing synthetic data. NeversiselWEM can be applied to our problem,
and we compare it against the proposed solution in the expats. The Matrix Mechanism and the
Adaptive Mechanism share some common features as the mapgokition, and we explain them
in detail in Sectio 2]2. 2.2. It is worth mentioning that as experiments shows, the proposed
solution outperforms all previous methods in terms of olenaor, on a variety of datasets and
workload types.

Recently, [[Nikolov et al. 2013] proposes a workload decositmn method that injectsorre-
lated Gaussian noise to the query results to satisfy \-differential privacy. They prove that their
solution provides ad((log m)?) approximation to the optimal mechanism, wherés the number
of queries. However, this method is infeasible in practiece it involves computing minimum
enclosing ellipsoids (MEE), for which the current best aion takesm®(")n time, wheren is
the number of unit countd. [Nikolov et al. 2013] suggestsgsipproximation method for comput-
ing MEE, e.g. Khachiyan'’s algorithrh [Todd and Yildirim 200This approximation algorithm still
takes high order polynomial time to converge, which makesadhibitively expensive for practical
applications.

Several theoretical studies have derived lower boundsh®mbise level for processing linear
queries under differential privacy [Dinur and Nissim 20B@irdt and Talwar 2010]. Notably, Dinur
and Nissim[[Dinur and Nissim 2003] prove that any pertudrathechanism with maximal noise of
scaleO(n) cannot possibly preserve personal privacy, if the advgisalowed to ask all possible
linear queries, and has exponential computation cap&ytyeducing the computation capacity of
the adversary to polynomial-bounded Turing machines, sheyv that an error scafe(y/n) is nec-
essary to protect any individual’ privacy. More recentlgrdit and Talwar [Hardt and Talwar 2010]
have significantly tightened the error lower bound for améwgea batch of linear queries under
differential privacy. Given a batch of. linear queries, they prove that amdifferential privacy
mechanism leads to squared error of at l&€xst 2>m?>Vol(W)), whereVol(W) is the volume of
the convex body obtained by transforming tBe-unit ball into m-dimensional space using the
linear transformations in the worklod®l. This paper extends their analysis to low-rank workload
matrices.

Another related line of research concerns answering caiettieractivelyunder differential pri-
vacy. In this setting, the system process queries one ateg tithout knowing any future query.
Clearly, this problem is more difficult that the non-interee setting described so far, where the
system knows all queries in the workload in advance. Mosilbilgt Hardt et al. propose the Private
Multiplicative Weights Mechanism (PMWM)]_[Hardt and Rothibd 2010], whose error is asymp-
totically optimal with respect to the number of queries ag®d. The MWEM method described
above [Hardt et al. 2012] applies similar ideas to the nderactive setting. Besides PMWM,
Hardt et al. [[Hardt and Talwar 2010] propose tRenorm Mechanism whose error level almost
reaches the lower bound derived in the same paper. Roth ietralduce the Median Mechanism
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[Roth and Roughgarden 2010] for answering arbitrary gseriteractively. However, both th& -
norm Mechanism and the Median Mechanism rely on uniform $agp a high-dimensional con-
vex body [Dyer et al. 1991], which theoretically takes palymal time, but is usually too expensive
to be applied in practice.

Besides linear queries, differential privacy is also agadlle to more complex queries in various
research areas, due to its strong privacy guarantee. Irefdeofidata mining, Friedman and Schus-
ter [Friedman and Schuster 2010] propose the first algorithrbuilding a decision tree under dif-
ferential privacy. Mohammed et al. [Mohammed et al. 201dfigtthe same problem, and propose
an improved solution based on a generalization strateggledwvith the exponential mechanism.
Ding et al. [Ding et al. 2011] investigate the problem of éintially private data cube publication.
They present a randomized materialized view selectionrigo, which reduces the overall error,
and preserves data consistency.

In the database literature, a plethora of methods have bepoged to optimize the accuracy of
differentially private query processing. A tutorial on alaase-related differential privacy technolo-
gies can be found in [Yang et al. 2012]. Cormode et al. [Corereidal. 201P] investigate the prob-
lem of multi-dimensional indexing under differential iy, with the novel idea of assigning differ-
ent amounts of privacy budget to different levels of the indeng et al[[Peng et al. 2012] propose
the DP-tree, which obtains improved accurate for higheedisional data. Xu et al. [Xu et al. 2012;
[Xu et al. 2013] optimize the procedure of building a diffefalty private histogram, whose method
combines dynamic programming for optimal histogram corafom and the exponential mecha-
nism. [Li et al. 201P] study the problem of how to perform foeqt itemset mining on transaction
databases while satisfying differential privacy, with ti@vel approach of constructing a basis set
and then using it to find the most frequent patterns.

In addition, differential privacy for modeling security social networks has also received much
attention in recent literature. [Rastogi et al. 2009] cdass answering subgraph counting queries
in a social network. Their solution assumes a Bayesian adwewhose prior is drawn from a dis-
tribution. They compute a high probability upper bound omlttal sensitivity of the data and then
answer by adding noise proportional to that bo ] shows how to privately approx-
imate the degree distribution in the edge adjacency modalgriph. Also,[[Sala et al. 2011] de-
velop a differentially private graph model baseddknseriegeconstruction. Their approach mainly
extracts a graph’s detailed structure into degree coioelatatistics and inject noise into the result-
ing dataset and generates a synthetic graph.

Lastly, differential privacy is also becoming a hot topic time machine learning commu-
nity, especially for learning tasks involving sensitivefarmation, e.g., medical records. In
[Chaudhuri et al. 2011], Chaudhuri et al. propose a gendfardntially private learning algorithm,
which requires strong convexity of the objective functiBubinstein et al[[Rubinstein et al. 2012]
study the problem of SVM learning on sensitive data, and @se@n algorithm to perturb the kernel
matrix with performance guarantees, when the gradientefdks function satisfies the Lipschitz
continuity property. Zhang et al. propose functional mexi$a and for a large class of optimization-

based analyses [Zhang et al. 2012]. Later, they proposerih@éhe framework, which combines
genetic algorithms and an enhanced version of exponengahamism for differentially private

model fitting [Zhang et al. 2013]. General differential iy techniques have also been applied
to real systems, such as network trace analysis [McShedyihajan 2010] and private recom-

mender systems [McSherry and Mironov 2D09].

2.2. Matrix Mechanism and Adaptive Mechanism

In the seminal work of[[Li et al. 2010], Li et al. propose thetrhamechanism (MM), which for-
malizes the intuition that a batch of correlated linear gggecan be answered more accurately under
e-differential privacy, by processing a different set of fas (called thestrategy and combining
their results. Specifically, given a workload of linear cting queries, MM first constructs\aork-
load matrixW of sizem xn, wherem is the number of queries, amds the number of unit counts.
The construction of the workload matrix is elaborated fertin Section 3. After that, MM searches
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for astrategy matrixA of sizer xn, wherer is a positive integer. Intuitivelyd corresponds to an-
other set of linear queries, such that every queriyirtan be expressed as a linear combination of
the queries iMd. The matrix mechanism then answers the querie$ imdere-differential privacy,
and subsequently uses their noisy results to answer queri&s

The main challenge for applying the matrix mechanism to toralkcworkloads is to identify an
appropriate strategy matriA. Ref. [Li et al. 2010] provides two algorithms for this puggo The
first, based on iteratively solving a pair of related semittfiprograms, incur®(m?3n3) computa-
tional overhead, which is prohibitively expensive evenrfmderately large values af andn. The
second solution (calledpproximate matrix mechanis(AMM)) computes aifs approximation of
the optimal strategy matrid. This method, though faster than the first one, still recinigh CPU
costs and memory consumption, and scales poorly with theadosize and query set cardinality.
In order to test the approximate matrix mechanism with lafge and query sets in our experi-
ments, we have devised an improved solution, which we calxponential smoothing mechanism
(ESM), based on the problem formulation of approximate matrixiaaism in [[Li et al. 2010].
ESM is at least as accurate as the methodin [Li et al.201@]yahmuch more efficient. Hence, in
our experiments we use ESM in place of AMM. Apperdix]A.1 pd®s details of ESM.

There are, however, two main drawbacks of ESM (and alsoleaiNM). First, the L, approx-
imation of the optimal strategy matrix often has poor gyalit fact, due to this problem, in our
experiments we found that undedifferential privacy, the accuracy of ESM is often no bettean
the naive solution NOD that injects noise directly into thetwounts. A second and more subtle
problem is that the formulation of the optimization progrem®MM involves matrix inverse oper-
ators, which can cause numerical instability when the finhlt®on (i.e., the strategy matrix) is of
low rank, as explained in AppendixA.1. The proposed lowkrarechanism avoids both problems,
and achieves significantly higher result accuracy as shownui experiments.

The idea of matrix mechanism naturally extendset@)-differential privacy, using the Gaussian
mechanism instead of the Laplace mechanism as the fundahbeiiting block. In this case, the
optimization program is defined using form, and the AMM formulation is equivalent to that of
MM, meaning that AMM and ESM now solve the exact optimizatmogram. Hence, in theory,
AMM can obtain optimal results. However, in practice, botBNEand the AMM implementation
in [Lietal. 2010] often fail to converge to the optimal segy matrix, due to numerical instability
incurred by the matrix inverse operator in the AMM formubati

Recently, [[Li and Miklau 2012] Li et al. propose another iemplentation of AMM, called the
adaptive mechanism (AM). For any given workld&d AM attempts to find the best strategy matrix
by computing the optimal nonnegative weights for the eigetors of the workload matri¥’. Since
the strategy matrix may have one or more columns whigseorm are less than the sensitivity, they
refine the strategy matrix by appending some completingantuto the candidate strategy matrix
without raising the sensitivity. Therefore, this post-qessing step can reduce the expected error.
AM incurs two serious drawbacks. First, it involves solvimgomplicated semidefinite program,
and it is not known whether their solution to the program @vges to the optimal solution. Second
and more importantly, such multistep strategy in AM doesafiier any guarantee on optimality. The
proposed method LRM is free from these problems, and obsigméficantly better performance as
we show in the experiments. Appenflix/A.2 provides detailadt

3. PRELIMINARIES

We focus on answering a batch of linear counting quefles {qi, q2, ..., ¢n} Over a sensitive
databasé. Each queryy; € Q@ is a linear combination afnit countsn the data domain, denoted as
x1,T2,...,T,. In the example of Figuré 1, the sensitive datah&seontains records correspond-
ing to individual HIV+ patients; each unit count is the numbé such patients in a state of the
US; each query in the example is a linear combination of tstse-level patient counts. Our goal
is to answerR with minimum overall error, while satisfying differentigkivacy. In particular, we
consider two definitions of differential privacy, namehgifferential privacy (i.e., the original def-
inition of differential privacy) andd,d)-differential privacy (a popular formulation of approxte
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Table I. Summary of frequent notations

| Symbol | Meaning
D input database
n number of unit counts
Q input query set
m number of queries id)
w workload matrix, i.e., the matrix representation(®f
B,L a decomposition otV satisfyingiW ~ B - L
s rank of workload matrixt”
r number of columns iB (also number of rows i)
Q(D) exact answer of) on databasé)
A(Q) L4 sensitivity ofQ
o(Q) Lo sensitivity ofQ
€,0 privacy parameters
&,n utility parameters
k(W) generalized condition number of matiik
W p-coherence of matrixV’
X1 maximum absolute column sum of mattk
X2 spectral norm, maximum singular value of matix
N X Moo maximum absolute row sum of matriX
[ X« nuclear norm, sum of the singular values of mafXix

IXTr Frobenius norm, square root of the sum of squared elementsiix X

differential privacy). Our solutions use the Laplace medsa (resp., the Gaussian mechanism) as a
fundamental building block to enforee(resp., €, §)-) differential privacy. In the following, Section
3.1 presents the definition efdifferential privacy and the Laplace mechanism. Secti@c®vers

(¢, 9)-differential privacy and the Gaussian mechanism. Se@i8 describes naive approaches to
answering a batch of linear counting queries. Section 3uaéxs important properties of low-rank
matrices that are used in our solutions. Table | summarieesiEntly used notations throughout the
paper.

3.1. e-Differential Privacy and the Laplace Mechanism

The basic idea behind the privacy guarantee of differepti@acy is the indistinguishability be-
tweenneighbor database§wo database® and D’ are called neighbor databases, iif. can be
obtained by adding or removing exactly one record flbmin the example of Figuld 1, a neighbor
database can be obtained by removing an individual from tiygnal data, or by adding another
one. For linear counting queries, the essential differéeteeen two neighbor databadesand D’
is that they differ on exactly one unit count, by exactly oRermally, let{x1, 22, ..., z,} be the
set of unit counts corresponding I and{z}, =5, ...,z } be the unit counts foP’. Then, there
exists an, 1 < ¢ <n, suchthat:; = 173 forall j # 4, and|z; — x}| = 1.

Given a set of querie®, a randomized mechanisi for answering() satisfiese-differential
privacy, iff. for every possible pair of neighbor databageandD’, the following inequality holds:

VR: Pr(M(Q,D) = R) < e‘Pr(M(Q,D') = R) (1)

whereR is any possible output oi/, and M (Q, D) (resp.M(Q, D")) is the output ofM given
guery set) and input databask (resp.,D’). This inequality indicates that given an outgiof M,
the adversary can only have limited confidence for infervifigther the input databaselisor D’,
regardless of his/her background knowledge. Sibcend D’ can be any two neighbor databases
that differ in any record, the above inequality also limite idversary’s confidence for inferring the
presence or absence of a record in the input database; igprcejdes plausible deniablity to any
individual involved in the sensitive data.

The Laplace mechanism_[Dwork et al. 2006c] is a fundamensélition for enforcing e-
differential privacy, based on the concept®f sensitivity Given a query sef), its £, sensitivity
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A(Q) is the maximun; distance between the exact resultg§)adn any pair of neighbor databases
D andD’, Formally, we have:

A(Q) = max (D). QD) @

Note that in the above equatioR,andD’ can be any pair of neighbor databases. He\q€)) is
a property of the query sé and the data domain, and it does not depend upon the actséiiwen
dataD. In the example of Figurld 1, the; sensitivity of a single query; = xxy + on7 +2ca +
Tw 4 iS 1, because any two neighbor databa3emdD’ differ on only one unit count (which can be
oneofryy,xny, zca Orzw 4) by exactly 1. If we includes = zyy +xnyyandgs = zoa+axwa
to the query sef), the £, sensitivity of@Q = {q1, ¢2, g3} is 2, because a change of 1 on any:afy,
TNJ, Toa OF 2y 4 affects the result of; by 1, and either one (but not both) @f andgs by 1,
leading to aL, distance of 2.

Given a databas® and a query sef), the Laplace mechanism (denoted/s,,) outputs a

randomized result set that follow the Laplace distribution with mea&p( D) and scal (EQ), ie.,

Pr(My0p(Q. D) = R) x exp (ﬁuR - Q(D)Il) 3)

This is equivalent to adding independent Laplace noiseg@act result of each querydp i.e.,
M(Q,D) = Q(D) + Lap (A(Q)) , wherem is the number of queries i@, and Lap ( (Q)) is
a random variable following zero-mean Laplace distributioth scale\ = @
density function of zero-mean Laplace distribution is:

. The probability

_ 1 [EdIR
f(x) = B exp <—T (4)
According to propertles of the Laplace distribution, theiaace of Lap()\) is 2)\? = Ag"?)z
Since the Laplace noise injected to each ofithgquery results is independent, the overall expected
2mA(Q)?

squared error of the query answers obtained by the Laplachanesm is——-. In our runn|ng
example in Figuréll, to answer the query §et= {¢1 = any + Ny + ToA + Twa, @2 =
TNy + N7, 93 = xca + zwa } undere-differential privacy, a direct application of the Laplace
mechanism |njects independent, zero-mean Laplace nosealﬂ to the exact result of each of

q1, g2 andgqs, since theL; sensitivity for this set of queries is 2 as discussed ini6efl. The

overall squared error fap is thu52xf§2 =2

3.2. (e, 6)-Differential Privacy and the Gaussian Mechanism

e-differential privacy can be difficult to enforce, espelyidbr queries with highZ, sensitivity, or

those whose&; sensitivity is difficult to analyze. Hence, relaxed versaf e-differential privacy
have been studied in the past, among which a popular defingtite ¢, 0)-differential privacy, also
called approximate differential privacy. This definitiowolves an additional parametgrwhich is

a non-negative real number controlling how closely thisrdgfin approximates-differential pri-

vacy. Formally, letRange(M) be the set of all possible outputs of a mechanidmA randomized
mechanism\/ satisfies ¢, §)-differential privacy, iff. for any two neighbor database andD’, the

following holds:

VR C Range(M): Pr(M(Q,D) € R) < e“Pr(M(Q,D') e R) +46 (5)
whereR is any set of possible results 8f. It can be derived that wheh = 0, (e, 0)-differential

privacy is equivalent te-differential privacy. Accordingly, sincé& is non-negative, any mechanism
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that satisfieg-differential privacy also satisfies,(9)-differential privacy for any value of. When
0 > 0, (¢, 6)-differential privacy relaxes-differential privacy by ignoring outputs a¥f/ with very
small probability (controlled by paramet&. In other words, ane( ¢)-differentially private mech-
anism satisfies-differential privacy with a probability controlled by

A basic mechanism for enforcing,(¢)-differential privacy is theGaussian mechanism
[Bwork et al. 2006b], which involves the concept®f sensitivity For any two neighbor databases
D andD’, the L, sensitivity©(Q) of a query set) is defined as:

0(Q) = max QD). QD)2 ©

In the running example shown in Figlite 1, thesensitivity for the query s&d = {¢1 = zyy +
INJFHToA+TWA, G2 = ENY FEINT, 3 = Toa+TwA}IS V2, since the exact results gf (as well
as one ofy; andgs) differ by at most 1 for any two neighbor databases, leadirant’, sensitivity
of V12 4 12 = /2. Similar to £, sensitivity, theL, sensitivity©®(Q) depends on the data domain
D and the query sap, not the actual data. Given a databdsend a query sef), the Gaussian
mechanism (denoted by/,.,) outputs a random result that follows the Gaussian digiohuwvith

mean@(D) and magnituder = ,(?((E%)) whereh(e, §) = \/ﬁ This is equivalent to adding
m-dimensional independent Gaussian ndise: (%)m, in which Gau (%) is a random

variable following a zero-mean Gaussian distribution gitales = %. The probability density
function of zero-mean Gaussian distribution is:

2
g(x) = \/FlCTQGXP (—%) (7

According to properties of the Gaussian distribution, tagance ofGau (o) is 02 = ,(?((E—%);.

Since independent Gaussian noise is injected to each ofitlgeery results, the total expected
e 2 . . .
squared error for the query set 6(?))2 . In our running example in Figufé 1, to answer the query

setQ = {q1 = any + TNy + Toa + Twa, @2 = TNy + TNy, 3 = Tea + zwal under g, 0)-
differential privacy, a direct application of the Gaussimechanism injects independent, zero-mean

Laplace noise of scalg(‘%) to the exact result of each of, ¢» andgs, since thel, sensitivity
for this set of queries is/2, according to Equatiori{6). The overall squared error@ois thus

3x(v2)% _ 48In(2/6)
(h(e.0))2 2

3.3. Naive Solutions for Answering a Batch of Linear Counting Queries

This paper focuses on answering a batch of linear countiragieg; each of which is a lin-
ear combination of the unit counts of the input datab&seFormally, given a weight vector
(w1, w, ..., w,)T € R", alinear counting query can be expressed as:

q(D) = wix1 + waxs + ... + wpay,

We aim to answer a batch of linear queries@) = {q1, ¢2, - - -, ¢m }. The query sef) thus can
be represented byworkload matrix/¥ with m rows andn columns. Each entr{y;; in W is the
weight in queryg; on thej-th unit countz;. Since we do not use any other information of the input
databaseé) besides the unit counts, in the following we abuse the radiy usingD to represent
the vector of unit counts, i.el) = (x1,72,...,2,)" € R™. Hence, the query batol can be
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answered by:
T

QD)=WD= Y Wiyazj,....> Wpjz; | €R™!
J J

Two naive solutions for enforcing differential privacy omjaery batch are as follows.
Noise on data (NOD). The main idea of NOD is to add noise to each unit count. Thensét of
noisy unit counts are published, which can be used to ansmelireear counting query. Because
two neighbor databases differ on exactly one unit count, Xacty 1, both thel, and the.l,
sensitivity for the set of unit counts is 1, according to threspective definitions. NOD employs
the Laplace mechanism to enforcdifferential privacy (or the Gaussian mechanism to erddec
0)-differential privacy) on the published unit counts, aheér combines the noisy unit counts to
answer the query bated. Let Mxop,. andMyop, (. 5) denote the NOD mechanism for enforcing
e-differential privacy ande, ¢)-differential privacy, respectively. We have:

Myop.(Q,D) =W (D - Lap <%)")

1 n
Myop, (5@ =W <D - Gau (h(e, 5)> >

whereh(e, d) = \/ﬁ as in the Gaussian mechanism.

Based on the analysis of the Laplace and Gaussian mechanisrexpected squared error for
Myop,candMyop,(cs) 1S & 3, ; Wi and g5y 30, W, respectively. For both privacy def-
initions, the error of NOD is proportional to the squared safrthe entries inV'.

Noise on results (NOR). NOR simply applies the Laplace mechanism (fatifferential privacy)
or the Gaussian mechanism (fer §)-differential privacy) directly on the query sét. Recall that
each queryy; € @ is a linear combination of the unit counts, i.¢.—~ Zj Wi;x;. Meanwhile, two
neighbor databases differ on exactly one unit count, bytgxacTherefore, the sensitivity (bott,
andL,) of ¢; ismax; W;;, i.e., the maximum unit count weightin. Regardingy, its £, sensitivity
is A(Q) = max; Y. |[Wj|, i.e., the highest column absolute sum [Li et al. 2010]. &irty, its £,

sensitivity is©(Q) = max; />, W2, i.e., the highest columi£, norm value[Lietal. 2010].

17"
Thus,Myor,c andMyo g, (c,5) OUtput the following results.

Mnor.(Q,D) = WD + Lap <%Q))

6 m
Meonicoram =W 6u (17 55)

whereA(Q) = max; Y, |[Wi;|, ©(Q) = max; />, W7, andh(e, §) = W
Similar to the analysis of the Laplace and the Gaussian nmésina, the expected squared er-
QmA(Q)2 _ 2mmax; y, w2

ror of the Mnor. ON queryqQ is = = 2 2 and the expected squared error of
MNoOR,(c.6) 1S mhi(g); = mmfgi_%;‘ Wi | Aninteresting observation is that undey §)-differential

privacy, NOR obtains lower expected squared error than NfDp max; . ij < Zj o ij

Note that whenn > n, this inequality can never hold, implying that NOR is moreeefive for
when the number of queries is smaller than the number of unit coumts
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3.4. Low-Rank Matrices and Matrix Norms

The rank of a real-value matriv’ is the number of non-zemingular valuebtained by perform-
ing singular value decompositiqi®VD) of W. SVD decomposed’ of sizem x n into the product
of three matricesiV = UX V. U andV are row-wise and column-wise orthogonal matrices respec-
tively, andX. is a diagonal matrix with positive real diagonal values, ahhare the singular values
of W. Let s be the number of such singular values, i.e., the rarik’ofThen, Matriced/, X, andV’
are of sizesn x s, s X s, ands x n respectively. SVD guarantees that min{m,n}.

A matrix W of sizem x n whose rank is less thanin{m, n} is called alow-rank matrix This
happens when the rows and columndifare correlated. In the running example of Figure 1, the
workload matrix corresponding to the query §¢t= {¢1 = zny + 2nJ + Zoa + 2wa,q2 =
TNy +ZNJ,q3 = xca + xwa} 1S @ low-rank matrix, since the queries@hare correlated (i.e.,
q1 = ¢2 + g3, and the unit counts are also correlated (exg.y andzy ;). The main idea of the
proposed low-rank mechanism is to exploit the low-rank propof the workload matrix to reduce
the necessary amount of noise required to satisfy diffexigmtivacy.

An important concept used in the proposed solution is their@abrm, which is an extension
of the notion of vector norms to matrices. Two common defingi of the matrix norm are: (i)
Entrywise norm, which treats a matfiX of sizem x n simply as a vector of size: x n consisting
of all entries of /W, and applies one of the vector norm definitions. For examggelying the
Ly-norm to all entries i} obtains||[W|l, = (3%, >0, |Wij|2)l/2, which is also called the
Frobenius normwritten as||WW || g. (ii) Induced norm (or Operator norm), defined pyV|||, =
max,o |[Wzl|p/|lz|l,, wherez is a vector of sizen, and||z||, is the £, norm of z. Notably,
[[|W]]]1 is simply the maximum absolute column sumi®t, and|||W ||| is simply the maximum
absolute row sum of the matri¥’.

4. WORKLOAD DECOMPOSITION

Recall that the example in Figuké 1 shows that sometimeshes to answer a batch of linear
counting querieg) indirectly, by first answering a set of intermediate linear countingigsainder
differential privacy, and combine their results to answkerThe proposed low-rank mechanism
(LRM) follows this idea. Specifically, given a workload miati? corresponding to the query set
@, LRM decompose$V into the product of two matriced” = BL. B is of sizem x r andL is

of sizer x n. Here,r is a parameter to be determined which specifies the numbatesfiiediate
queries;L corresponds to the set of intermediate linear countingigsiés answer under differential
privacy; B indicates how the results of these intermediate queriesariined to answep. The
main challenge lies in how to choose the best decomposhi@amainimizes the overall error @,

as there is a vast search space for possible decompositiotigs section, we model the search
for the optimal matrix decomposition as a constrained ogttion program, which is solved in
the next section. For the ease of presentation, we focusdifferential privacy in this and the next
section, and defer the discussion gf®)-differential privacy until Sectiohl6. In addition, we pide
asymptotic error bounds for LRM in AppendiX B.

In the following, Sectiof 4]1 formalize LRM and the optimipa program of workload decom-
position. Sectiof 412 analyzes the result utility of LRM lwthe optimal workload decomposition,
and discusses the selection of the privacy parameténally, Sectio 413 presents a relaxed opti-
mization program for workload decomposition which cantertimprove the accuracy of LRM for
certain workloads.

4.1. Optimization Program Formulation

We first formalize LRM undee-differential privacy. Giverit' and its decompositiohl’ = BL,
LRM first applies the Laplace mechanism to the intermediaterigs specified by.. Let A(L)
denote thel; sensitivity of these intermediate queries. Similar to taeecof NOR discussed in
Sectiof3BA(L) is the maximum sum of absolute values of a colum# jivhich is:
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L) = mﬁxzi:u:m

Applying the Laplace mechanism, we obtain the noisy resiltse intermediate queries:

1+ 1oy (2L22)

where D denotes the vector of unit counts. Next, LRM multiplies matB with the noisy
intermediate results, which essentially recombines ttierimediate results to answé). Let
M ru,(Q, D) denote LRM undee-differential privacy, we have:

Mrrm,(Q,D) =B (LD + Lap <%L))T) (8)

SinceW = BL, we haveQ(D) = WD = BLD. Hence, the outpud/;, g (@, D) can be
seen as the sum of two componentdD and B - Lap ( Ald) ) The former is the exact result of

Q, and the latter is the noise added in order to satisfy d||ffmbpr|vacy. Next we analyze the error
of LRM. First we define thecaleof a decomposition, as follows.

Definition 4.1 Scale of a workload decomposition. Given a workload decompositiol’ =
BL, its scale®(B) is the squared sum of the entriesfiyi.e., ®(B) =3, ; Bj;.

Meanwhile, we callA(L) the £; sensitivityof the decompositio = BL. The following
lemma shows that the expected squared error of LRM is lire#re scale of the decomposition,
and quaderatic to th€, sensitivity of the decomposition.

LEMMA 4.2. The expected squared error df; g, (Q, D) using decompositiol” = BL is
20 (B)A(L)?
€2 '

PrROOF According to Equatior {8/ ras,(Q, D) —Q(D) = B- L p( Ald) ) . The expected
squared error of the mechanism is tr(@ij ij) 2(A€(72L))2. Since®(B) = 3, B};, the error can
be rewritten a ‘b(B)E(f(L))z. O

Therefore, to find the best workload decomposition, it seffi solve the optimaB and L that
minimize ®(B) (A(L))?, while satisfyingl = BL. However, this optimization program is dif-
ficult to solve, because (i) the objective function involtke product ofd(B) and the square of
A(L), and (ii)A(L) may not be differentiable. To address this problem, we fis¢@an important
property of workload decomposition, which implies that éxact value ofA(L) is not important.

LEMMA 4.3. Given a workload decompositiof’ = BL, we can always construct another
decompositiodV = B’L’ satisfying ()A(L’) = 1 and (ii) (B’, L') lead to the same expected
squared error ofV/1rasc @S (B, L), i.e.,

®(B)A(L)? = ®(B') (A(L))” = ®(B')

PROOF We obtainB’ andL’ by B" = A(L)B, L' = —) Based on the definition of;

sensitivity, we have

A

1

L
= L. = kY
max El |31 max % ’A(L)
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Meanwhile, according to Definitidn 4.1, we have:

®(B') = (B};)> = A(L)*(B;)* = ®(B)A(L)?
ij ij
This leads to the conclusion of the lemma&

It follows from the above lemma is that there must be an ogdtavaomposition withl; sensi-
tivity equal to 1, because we can always apply Lerimh 4.3 tsfoam an optimal decomposition
whoseL, sensitivity is not 1 to another optimal decomposition whisaensitivity is 1. Therefore,
it suffices to fixA(L) to 1 in the optimization program. Meanwhile, according topsrties of the
matrix trace, we havé(B) = tr(B” B). Thus, we arrive at the following theorem.

THEOREM 4.4. Given the workloadV, a workload decompositiol” = BL minimizes the
expected squared error of the queries, /i, L) is the optimal solution to the following program:

1
min ~tr(B7 B)
B,L 2

Vi Lyl <1

The constant factor/2 in the objective function above simplifies the notationshia following
sections; it does not affect the optimal solution of the pang We omit the proof since it is already
clear from the discussions above. Solving the above opgitioiz program is rather difficult, since
it involves a non-linear objective function and complex swaints. We present a relaxation of the
problem in Sectioh 413, and our solution in Secfibn 5.

4.2. Utility Analysis and Budget Selection

In practice, users are often unsure about how to set thegprparametet involved ine-differential
privacy. Instead, setting the desingtility level of the query results is much more intuitive. Given the
user-specified utility, this subsection derives the smalievalue for LRM that satisfies the utility
requirement. Note that smaller valuese€orresponds to stronger privacy protection. We use a
common definition of query result utility called,(r)-usefulnes< [Blum et al. 2008], as follows.

Definition 4.5. Given a mechanisnd/, query setQ, sensitive datd), and parameters > 0
and0 < n < 1, we say that\ is (¢, n)-useful with respect t¢ and D under the| - ||.-norm if the
following inequality holds:

Pr([|M(Q,D) = Q(D)[l« =2 &) <n
where]| - ||.-norm can be any vector norm definition. In our analysis, wesater the|| - ||;-norm
and the|| - || o-norm.
Given user specified values ©aindn, we now derive the minimum value feiwith which LRM

achieves {, n)-usefulness. The derivation uses Markov’s inequality #ve Chernoff bound, as
follows.

LEMMA 4.6. Markov’s Inequality and the Chernoff Bound [BillingsleylZ). Given a non-
negative random variabl& andt¢ > 0, the following inequality holds:

EX]

Pr(X >1t) <

Moreover, for anys > 0, we have:
E[esX]

t

Pr(X >t) = Pr(esx >et) < .
e
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The minimume value is given in the following theorem.

THEOREM 4.7. Utility of LRM under e-differential privacy. Given query set), databaseD,
and user-specified parametefs> 0 and0 < n < 1, (i) Mg, With the optimal decomposi-
tion W = BL solved from Prograni{9) returng (n)-useful results of) on D under the|| - ||;-
norm, when the privacy parametersatisfiese > (2|||B]||1(s - In2 —Inn)) /&. (i) Meanwhile,
M1 ra,e With the optimal decomposition achievés )-usefulness under thig- ||..-norm, when

€= (20I1Blloo(X1, In(=h5) — Inm) ) /¢.

PROOF (i) We first prove the utility of LRM under thé - ||;-norm. LetX be the Laplace noise
vector injected to the results of intermediate queriesesponding td.. We have:

[Mp(Q, D) = Q(D)|ly = [B(LD + X) - WDl
= 1B~ X = l[[B - XI[[x <[IBI[lx - 1 XI[h = Bl - 1 X]}

According to the Laplace mechanisi; , X5, - - - , X,. are i.i.d. random variables following the
zero-mean Laplace distribution with scalL)/e. SinceL is obtained by solving Prograrfil (9),
we haveA(L) = 1. Therefore, the scale of each of the Laplace variablel < i < ris1/e.
According to properties of the Laplace distributio;; | follows the exponential distribution with
rate parameter equal toLetY = || X||; = |X;| + |X2| + --- + | X,|. Then, according to prop-
erties of the exponential distributiol, follows the Erlang distribution. Specifically, the probléli
distribution function ofY is:

Pr(Y — B Erxrflefémd

For any positive numbersuch thafE[¢*Y] exists, we have:

[es} r.r—1_—ex t

EtY:/ tm.udzl__*rt<
] 0 ¢ (r—1)! z = e) e

Moreover, for any real number according to Lemmia4.6, we have:

Pr(Y > ¢) = Pr(e” > ¢'%) < EletY] _ (1— é)_T

ect ect
. _ e o £ .
Settingt = 5 andc = e We obtain:
3 (3)"
Pr(Y > ) < .
NIBIll" ~ camm

Therefore, we have:

1Mp(Q, D) = QD)1 < [[[Bll|x - Y
= Y, Pr(||Mp(Q, D) = QD)1 > €) < Pr(Y > ) < —21—

___ &€
e2l11BIll1

(10)

Whene > (2|||B|||1 (r - In2 — Inn)) /&, the above probability is thus bound hyThis finishes the
proof for claim (i) in the theorem.

(i) Next we focus on thél - ||.-norm. LetX denote the same meaning as in the proof of part (i).
Then, we have:

[Mp(Q, D) = Q(D)lloc = B+ Xlloo < [[[Bllloc - [[X]loo
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The inequality above holds due to the fact tHaRz || < |||R||| - |||l fOr any matrix R
and vector:. LetY = || X || = max (| X1],|Xz2|,---,|X.|). Similar to part (i) of the proof, each
|X:],1 < i < r follows the exponential distribution with rate According to the memoryless
property of the exponential distribution, we create a clodivariables, as follows:

Y = max(|X1|, |X2|a ) |XT|) = Xo=re + XX:(T—I)é + o+ X (11)
where eachX,_, denotes an independent exponential random variable witharalntuitively,
X=re models the distribution of the smallest value amakg|, | Xz|, - - -, | X, |, Xo—(r—itnye, 1 <
i < r models the difference between thth smallest value and thg — 1)-th smallest value among
|X1], [ X2|, - -+, | X;|. The sum thus yields the maximum value amoig|, | Xz, - - -, | X,

Similar to the part (i) of the proof, we further derive:
E[etY] _ ]E[et(x)\:'ré+X)\:(7‘71)e+"'+x)\:e)] _ ]E[et(x)\:ré)] . ]E[et(x)\:(rfl)e)] ,,,,, E[et(x)\:e)]

Becausd[e/ =] = [* €' . ae~"dx = -%; foranyt < a, we reach:

Vt < €, Ble’Y] = H '

Ltlije—1t
=1

. Finally, according to Lemnia4.6, we have the following inalify:
Pr(Y >¢) =Pr(e"” > e)
Elet™)]
< —_

- ect

s 1€
_ ct
- H 1€ — t/e
=1
With the choice of = £ andc = W, we obtain:

1Mp(Q, D) = Q(D) oo < [IIB[]so - [1X|oc
= V&, Pr(| Mp(Q, D) = Q(D)l|os > &) < Pr(|[X|loo > mrpims)

= &, Pr(|Mp(@, D) ~ QD)oo > €) < (TTy 725 ) fet = (ITiLy sy ) oo

Whene > (2|||B|||00 (22:1 In(+—%5%) — In 77)) /&, the above probability is bounded by O

3

4.3. Relaxed Workload Decomposition
Progran(® is rather difficult to solve, since it contains a-finear objective and complex con-

straints. To devise a stable numerical solution, we releehmulation so thaB L does not neces-
sarily matchi? exactly, but within a small error tolerance. To do this, weeaduce a new parameter
~ to bound the difference betweé# and BL in terms of the Frobenius norm. This leads to the
following optimization program:
1 T
wip SU(B7B)
ViYLl <1
The following theorem analyzes the error of LRM with the apdl decomposition obtained by

solving Program({12).
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THEOREM 4.8. The expected squared error 8f; s (Q, D) using the optimal decomposi-
tion (B, L) solved from Prograni{12) is at most

2tr(BTB)/e* + v Z 2

PROOF WhenW # BL, there are two sources of error. The first is the added Laplatse.
According to Lemm&4]2, the error incurred by the Laplaceseds at most: ®(B)(A(L))? <
Ztr(BTB).

The second source of the error is due to the difference betiWeandB L. The incurred expected
squared error is bounded by:

(W — BL)D)"(W — BL)D

< |W = BL|3D"D = |W - BL| ) a?
i=1
The inequality above is due to the Cauchy-Schwartz inetyu8y linearity of expectation, the
expected squared errors can be simply summed up. This ledds tonclusion of the theorem.

O

While Theoreni 418 implies the possibility of estimating thgimal~, it is not practical to im-
plement it directly, because this estimation depends oddke, i.e.) ", z?. In our experiments, we
test different values of, report their relative performance, and describe gui@sliior setting the
appropriatey independently of the underlying data.

5. SOLVING FOR THE OPTIMAL WORKLOAD DECOMPOSITION

This section solves the relaxed workload decompositioblpra defined in Prograni_(IL2). This
program is rather difficult to solve, because it is neithenvex nor differntiable. In the following,
Sectio 5.1 describes an effective and efficient solutiased on the inexact Augmented Lagrangian
method [Conn et al. 1997; Lin et al. 2010]. Section] 5.2 prawes the proposed solution always
converges, and analyzes its convergence rate.

5.1. Solution Based on Augmented Lagrangian Method

Observe that Program {112) is a constrained optimizatiohlpro with a large number of unknowns,
a non-linear objective and rather complex constraintceésthere is no known analytic solution to
such a problem, we focus on numerical solutions. Furtheepfarogram[(112) is difficult to tackle
even with numerical methods, due to three main challengest.@nd foremost, there are a a set of
non-differentiableconstraints/;j "7 |L;;| < 1, which rules out many generic techniques for solv-
ing constrained optimization problems, such as the Lagramgjtiplier method, which are limited
to problems with differentiable constraints. Second, the-differentiable constraints involve the
unknown matrixZ, whereas the objective function involves another unknowatrim B, whose re-
lationship toL is rather complex (i.e., in constraifitV — BL || < ); consequently, it is non-trivial
to apply specialized methods for handling the non-difféedre constraints. Finally, Program {12)
is not convex with respect to the unknowBsand L.

The main idea of the proposed solution is to break down Progi&) into simpler, solvable sub-
problems. Since the most difficult part of Progrénd (12) isakistence of the non-differentiable con-
straintsvj > |L;;| < 1, we aim to break down the whole problem into subproblems avitly these
constraints, and an objective function that only invoifressainknownZ, not B. Then, we use a spe-
cialized technique to solve each of these subproblemsif&adly, we first eliminate the constraint
lW — BL||r <~ — 0 using the augmented Lagrangian method, which runs in nheltigrations,
each of which solves a subproblem with only the constraiffs_ |L;;| < 1. Then, inside each it-
eration, we remové from the objective function of the subproblem, by altenlii optimizing for

ACM Transactions on Database Systems, Vol. V, No. N, Artil@ublication date: January YYYY.



A:18 G. Yuan et al.

ALGORITHM 1: Workload Matrix Decomposition
1: Initialize 7@ = 0 e R™*™, 80 =1 k=1
2: while not convergedlo
while not convergedio
4 B « updateB using Equation{14)
5: L™ + run Algorithm3 to update. according to Prograni{15)
6: Computer = |W — BOL®||
.-
8
9

if 7 is sufficiently small or3 is sufficiently largechen
returnB®*) and L
. if kis a multiple of 10then
10 ﬂ(kJrl) _ 25(’6)

11 gD = k) 4 glh+1) (W _ B(k)L(k))
122 k=k+1

B andL. The result are subproblems with only the constraifits"; |L;;| < 1 as well as an objec-
tive function that has only. as unknowns. Each of these subproblems are then solved byrapp

a special solver called Nesterov’s first order optimal geatimethod[[Nesterov 2003]. An impor-
tant optimization is that we apply thieexactaugmented Lagrangian methad [Conn et al. 1997;
[Cin"et al. 2010], which does not solve the subproblem exaatgach iteration exactly, leading both
increased efficiency and stability.

Algorithm[d shows the proposed solution for Program (12stFive apply the inexact augmented
Lagrangian method to eliminate the linear constriimt — BL||p < v — 0, as follows: we add to
the objective function (i) a positive penalty itefne R and (ii) the Lagrange multiplier € R™*™,

(5 andr are iteratively updated, following the strategy(in [Conmetl997[ Lin et al. 2010]. In each
iteration, the values of andx are fixed, and the algorithm aims to find values fand L that
minimize the following subproblem:

1
min J (B, L, 3,7) = St(B"B) + (., W ~ BL) + §|\W - BL|I? (13)
s.t. VJZ |L”| <1

Next we eliminate unknown® from the objective function of the above subproblem, Progra
. Observe that this is a bi-convex optimization problem wébpect taB and L, meaning that it is
convex with respect t@3 (resp.L), once we fixL (resp.B) to a constant. Hence, we solve it by
alternately optimizingB and L (lines[3E% of Algorithm 1). Note that following the inexactug-
mented Lagrangian Multiplier methodology, it is not ne@egso obtain the exact optimal values of
B andL, instead, a small number of iterations of the while-loopne$4Eb suffices. We first focus
on optimizingB, treatingL as constant. Observe thd{-) is convex with respect t&. Hence, the

optimal B can be obtained by solvin%% = 0. In particular, the gradient with respectmis:

g—‘g =B-—xL" +BBLLY — pWLT

Solving B from g—g = 0, we obtain:
B= (BWL" + L") (BLLT + 1) (14)
Next we show how to optimizé with a fixed B. This is equivalent to the following quadratic

program:
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G(L) = gtr (L"BTBL) —tr ((BW +m)" BL)
(15)
The gradient of the objectiv@(L) respect td. in (I5) can be computed as:
gi =BBTBL - BBTW — BT» (16)

Forall L', L" with Vj >, [Li;| < 1,Vj >, [L};| < 1, we have the following inequalities:
I6(L) —G(L")lr _ |IBB"BL — BBTBL"||r

Ir—re L' = L"||r
BB B|||2 - | L' = L"||F T
< ”L/_L//”F :B”lB B|||2

Therefore, the gradient ¢f( L) is Lipschitz continuous with parameter= 3 - ||| BT B|||2.

We employ Nesterov's first order optimal gradient mettioddideov 2008] to solve the program
in (I5). Nesterov’s method has a much faster convergenedirah traditional methods such as the
subgradient method or naive projected gradient desceptupptiating rule in the projected gradient
method is expressed as follows:

0 99
OL®

wheret denotes the iteration counté?( L) denotes the&; projection operator on anf € R"*",
1 > 0 denotes the appropriate step size. One typical choice ®the inverse of the gradient lips-
chitz constant /w, however, this can be sub-optimal when the gradient liggaunstant is large.
One can incooperate Beck et al.’s backtracking line searaltegy to further accelerate the con-
vergence of the projected gradient algorithm [B H )]. We adopt this line search
strategy in our algorithm.

L is updated by gradient descent while ensuring thattheegularized constraint oh is satis-
fied. This is done by th&, projection operator, formulated as the following optintiaa problem:

LD — P(L(t) _

P(L) = arg mln |L — L||%,s.t. Vj Z |Li| <1, 17)

We observe that Equation{17) can be decoupledsiritedependent; regularized sub-problems:

arg min ||l — 1|2, s.t. LI <1
g i, =115 321l <

wherel = LE.t),j =1,2,---,n, L§.t) is the j* column of L®). Such a projection operator can be
solved efficiently byZ; projection methods i0(r log ) time [Duchi et al. 2008], as described in

Algorithm[2. The complete algorithm for solving Progrdmi(isssummarized in Algorithril3.

5.2. Convergence Analysis

This subsection analyzes the convergence properties pftip@sed workload decomposition algo-
rithm. In each iteration, Algorithia] 1 solves a sequence ajraagian subproblems by optimizing
B (sted4) and. (sted®) alternatingly. The algorithm stops when a suffityesmall v is obtained
or the penalty parametgris sufficiently large. It suffices to guarantee tliatonverges to a locally

optimal solution([Lin et al. 2010; Wen et al. 201 2a; Wen eRalL2b].
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ALGORITHM 2: Algorithm for £, Ball Projection

. input: A vector] € R™**

. sortl intov such thaty > ve > --- > v,

: find p = max{i € [r] 1 v; — + (22:1 v — 1) > 0}
: computef) = > ( v — 1)

: outputl € R™!, s.t.l; = max(l; — 0,0),i € [r]

a b w NP

ALGORITHM 3: Nesterov's Projected Gradient M ethod

1 input:G(L), 2¢, L

2: y =r-n-10"*2, Lipschitz parameters®) = 1

3: Initializations: LY = L© 7D =0, 7O =1t =1
4: while not convergedio

5. a=T 25l 5 =LW 4 a(L® - L)

6: forj=0to---do

7 w:2jw<t71),U:S—%Vs

8: Projectl to the feasible set to obtait™® (i.e., solve Equatiori{17))
9: if |S—LY|r < xthen

10: return;

11: Define function:7.,,s(U) = G(S) + ($&,U — S) + £||U — S||%
12: if G(LW) < J,s(U) then

13: w® = w; LD — 1 preak;

. 1) 1y/144(r(E=1))2
14: Setr® = —_—

150 t=t+1
16: returnL®

In general, penalty methods have the property that whenltimb(or local) minimizers of the
subproblem are found, every limit point is a global (or I9aainimizer of the original problem
[Fiacco and McCormick 1968]. This property is preserved oy Augmented Lagrangian Multi-
plier counterparts. Therefore, the proposed solutionfentorkload decomposition problem con-
verges, whenever the bi-convex optimization subproblefrimgram [(5.11) converges. Regarding
the convergence properties of the bi-convex optimizatidspsoblem, past study [Bertsekas 1999]
on bi-convex optimization has shown that block coordinagscént is guaranteed to converge to
the stationary point fostrictly convexproblems. However, the subproblem in Programi(5.1) is not
strictly convex (though it is convex); meanwhile, the sudigem may have multiple optimal so-
lutions, which may cause problems to its convergence. Ratély, for bi-convex optimizations
which only involves two blocks| [Grippo and Sciandrone ZJ0§ltows that the strict convexity of
the subproblem is not required; every limit point{ds*), L(*)} is a stationary point. Accordingly,
the bi-convex optimization subproblem exhibits nice cageace properties. In the following, we
formalize and prove the convergence results of the propalgedithm.

We first present the first order KKT conditions of the optimiaa problem in Prograni(12).
Introducing Lagrange multiplierss € R™*! and7® € R™*" for the inequality constraints
Vj > ¢ |L;;| < 1and linear constraintd’ = BL respectively, we derive the following KKT condi-
tions of the optimization problem:
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1 >0 (Non-Negativity)

W = BL, wZ |Lij| <1 (Feasibility)

n

B=rL7, OEZ Jaz |L”| — BTx (Optimality) (18)

Vg uj(z |L;j] —1) =0 (Complementary Slackness)

The following theorem establishes the convergence priggest the proposed algorithm, under
the assumption that the iterates generated by Algofithmhibéno jumping behavior. Remark that
the similar condition was used in [Wen et al. 2012a; Wen e2GIL2b].

THEOREM 5.1. Convergence of Algorithm[D Let X £ (B, L,x) and {X(*)}°  Dbe the in-
termediate results of Algorithid 1 after titeth iteration. Assume the{tX(’“)} ° , is bounded and
limg o0 (X #1D — X(*)) = 0. Then any accumulation point §f (¥)}° | satisfies the KKT con-
ditions presented in Equatioh (1.8). In other words, Whenéx)itéz(’“)]»zo:1 converges, it converges to
a first-order KKT optimal point.

ProoF. SinceL**1) is the global optimal solution of Prografi{15), by the KKT ioml con-
dition, there exis: > 0, u € R™**! andL(*+1 such that the following equation holds:

n T (k+1)
821 |Lij |

< g * 21 (19

Note thatg is a convex function with respect Id’““). Hence, the KKT conditions are both neces-
sary and sufficient conditions for global optimality. Comibig Equationd(116) an@(1L9), we obtain:
BRW+IT (B(k-l—l)T(L(k-l—l) _ L(k))) (20)

n 62 |L (k+1) |
_ (k+1)T (k+1)T 7 (k) (k+1)T
= BB (W - B L™ 4 B( E M ==

We derive the following equations according to the upddﬂsme (at Line[4 in Algorithn{1) and
the Lagrangian multiplier update rule fer(at Line[11 in Algorithni1), respectively:

Blk+1) _ (ﬁWL(k)T 4+ LT _ g® (gL (DT 4 1)) (ﬁLw)L(k)T T 1) - (1)

gD _ (o) — _glt1) (W _ B(k+1)L(k+1)) (22)

Since{ X *)}2° | is bounded according to our assumption, the sequejiggd} > | and{ L")} |
are also bounded. Hendémy, . (X **+1 — X*)) = 0 implies that both sides of Equatidn_{20,
[21,[22) converge to zero asapproaches infinity. Consequently,

W —BH® LK 0, zLWT _ Bk 0
n 62 |L (k+1) |

. k+1
e T+ Zuj = G 0 (23)
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where the first limit in Equation{23) is used to derive othemits. Therefore, the sequence

{X(’“)}g‘;l asymptotically satisfies the KKT conditions in Equati¢n)(18his completes the
proof. O

Next we focus on the convergence rate of the proposed aigerithe following theorem states
that it converges linearly.

THEOREM 5.2. Convergence Rate of Algorithm[d Let X £ (B, L,7) and{X () }¢° | be the
intermediate results of Algorithil 1 after theth iteration. Assume thgtX ()12 | is bounded and

limy o0 (X FHD — X (R)) = 0. Let (B, L(®)) be the solution obtained after theth iteration
and(B*, L*) be the optimal solution to Prograri{12), we have

_min[tr (B(i)TB(i)) _r (B*TB*) <0 (%) (24)

i=1,2,...,

In other words, Algorithrill converges to the stationary pbirearly.

PrOOF. Let B(*) denote the solution of the Lagrangian sub-problem initHeiteration. The
following inequality holds on the sequence of the Lagrangiabproblems:

j(B(kH)’L(k-H)’ 7T(76)’5(16))
min  J(B,L,x", M)

Vi3 I Lijl<1

i * 3k)
Join - J(B, L7, )

Vi3 I Lijl<1

IN

IN

= min %tr(BTB) = %tr(B*TB*) (25)
Vi Zii\Lij)\Sl
By the definition of7(-) and the inequality above, we derive the following ineqyalit

ltr(B(kH)TB(kﬂ))
2

(k)
— j(B(k+1), L(k+1)7 7.{.(16)7 B(k)) _ <7T(k), W — B(k+1)L(k+l)> 4 /BT”W _ B(k+1)L(k+l) ||%

1
= JBED, L0, 70, 50) — o (I 4 5O W — BEDLED) D))
1
= JBED, LD, 10, 50) — g (I~ IOl
Lo sl s 1 (k+1) (2 (k) 112
< QUBTE) — oo (4Ol ~ 1=V (26)

The third equality holds because of the Lagrangian muétiplpdate rule:

W — B+ (k1) — ﬁ (ﬂ_(k-i-l) _ 7T(k)) _
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By the non-negativity of norms, we have:
1 T 1 T
Ztr(BRDT gty s L (gRHDT gDy iy — gD (k1) )12
St ) = S ) -1 %
1 .
> 5tr(B*TB ) — ||[W — B+ L)1 2

1
350 (Il ~ IOl (27)

1 .
= —tr(B*TB") —
Combining Equation$ (26) and {27), we obtain:
i i+1)T (i «T i i :
O (r (BEVT B ) (BTBY) ) = 07— 703, i

Summing this equality above over= 0, 1..., k — 1, we have:
k=1 I
>80 (1 (BEO B e (BT B ) = ln O F - =3 (28)
=0

Sinces*) is non-decreasing, we have:

I — || F) /8

i=0,1,..., k (29)

By the boundedness ¢fr(®)||2, — ||7(?)||2,, we complete the proof.0o

Note that although our convergence proof assumes that edgnablem is solved exactly, this
is not required in practise, because the inexact augmerggchhge multipliers method has been
shown to converge practically as fast as the exact augmeatgdnge multiplierd[Lin et al. 2010].
Meanwhile, inexact augmented Lagrange multipliers regsignificantly fewer iterations when
solving the subproblem, leading to much higher efficiency.

Complexity Analysis: Each update ofs in Equation[I#) take®(r?m) time, while each update
on L consume®)(r%n) time. Assuming that Algorithi]1 converges to a local minimwithin N;,,
inner iterations (at line 3 in Algorithial 1) and¥,,; outer iterations (line 2 in Algorithral1), the
overall complexity of AlgorithnlIL i) (N;,, X Nyt X (r?m + r2n)).

6. LRM UNDER (¢, 6)-DIFFERENTIAL PRIVACY
This section extends LRM te (0)-differential privacy. Section 6.1 formulates the workibdecom-

position as an optimization program. Section 6.2 analyzesitility of LRM. Section 6.3 discusses
the algorithm for solving optimal workload decomposition.

6.1. Workload Decomposition

Similar to the case of-differential privacy described in sectibh 4, LRM decomemthe workload
matrix W into W = BL. Then, LRM applies the Gaussian mechanism to the interrteedigeries
corresponding td. to enforce ¢, ¢)-differential privacy. Finally, LRM combines the noisystgts
of the intermediate queries accordingBoto obtain the results af. Formally, let© (L) be theL,
sensitivity of L, i.e., ©(L) = max; (3, ij)l/Q. LRM under ¢, 9)-differential privacy is defined
as follows.

MLRM,(E,(s)(Qa D) =B (LD + Gau <}?(6(I?;))) ) (30)
whereh(e, d) = \/ﬁ
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Let ®(B) be scale of the decomposition as defined in Definlioh 4.1,8€3) = _, ; B;. The
following lemma shows that the error of LRM is linear®d B), and quadratic t®(L).

LEMMA 6.1. The expected squared error df;, g/ (,5)(Q, D) with respect to the decomposi-
tion W = BLis81In(2/5)®50(L)?/e.

PrROOF. According to Equation(30)2(D) — My ras(e,5)(Q, D) = (Gau (h( 5))) ) The
expected squared error of LRM is thds,; B, Qh(()(L))) Since®p = Y, B, andh(e,d) =
\/W the error can be rewritten 83n(2/6)<1>39( )2 /€.

Therefore, the best decomposition is the one that minimize®(L)?. Similar to the case of-
differential privacy, the particular value 6f(L) is not important, as stated in the following lemma.

LEMMA 6.2. Given a workload decompositidi¥ = BL, we can always construct another
decompositiolV = B’L’ satisfying (i)©(L’) = 1 and (ii) (B’, L’) lead to the same expected
squared error ofV/ 1, gay,(c,5) @s (B, L).

The proof is similar to that of Lemnia 4.3, and omitted for linevBased on LemmB 6.2, we
formulate the following optimization program for findingetivest decomposition fa¥/, zs, (¢, s):

1
min —tr(BTB)
B,L 2

st. W =BL (31)
Vi L% <1

6.2. Utility Analysis and Budget Selection

This subsection analyzes the utility; z,,,(.,s), as well as the choice of the privacy parameters (
0) given a user-specified ut|I|ty constraint. We ugerf)-usefulness (Definition 41.5) as the utility
measure. The result is stated in the following theorem.

THEOREM 6.3. Utility of LRM under (e, §)-differential privacy. Given databasé and work-
load W, for any¢ > 0 and0 < n < 1, mechanismM gy 5y USiNg the optimal decom-
position W = BL solved from Program[{31) has the following utility guaraesge (i) when

€> \/6 ‘In2 . (£1In3 —Inn)|||B|l|2/& the output oVl 1, s (e, 5) is (€, m)-useful under thef - [|o-

norm; (i) whene > /(6Inr —3mn3)(In2 — Ind)/n|||Bl||~ /&, the output of My oy (c5) iS
(€,m)-useful under thd - ||.-norm.

PrROOFE (i) Let X be the Gaussian noise vector injected to the intermediatdtsein LRM.
According to Equatior (30), we have:

IMLRas(e.5) (@, D) = QD)3 = |B(LD + X) = WDI3 = ||B- X[[5 < [|[BIII3 - [|X]3

The inequality above is due to the fact thidz || < |||R|||2 - [|z||2, for any matrixR and vectotz.
Accordingly, we derive the following:

ML R (e,6)(Q, D) — QD)3 < [[|BIIIS - 1X113
= V& Pr(|Mprar .5 (@, D) — QID)IIZ = €2) < Pr(|| X3 - IIBIIS = €2)

= vé-?Pr(HMLRIL{,(e,é)(QvD) - Q(‘D)H2 > 5) < Pr(HXHZ = |||Bm2)
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Next we focus on properties of . According to the Gaussian mechanism, the elements of
i.e., X1, Xs, -+, X, followi.i.d. zero-mean Gaussian distribution with scale- % Since the
decompositioV = BL is solved from Prografi 81, we ha®&(L) = 1. Thus,c = h(el_’é) =

Leett, ¢ be any positive number, we have:

E[ |X|3}
e to2
X2 I1x13 .

Pr(| X3 >¢) = Pr (m > %) =Pr (e W > eta2> S ——=

to? to 0702
where the last inequality holds due to Markov’s inequality.
Consider the random variablé = exp (i—z) wheret is an arbitrary positive number such that
EE[Y;] exists. According to the probability density function oétlbaussian distribution (Equation
(@), we have:

E[Y;] = /:: g(gc)e(:ff_zz)d:v = /:: \/ 2;026(7%)6%(11' = 1/%,% > 2

Based on the above derivations, and the fact #i& are independent variables, we obtain:

2

[y (Bert) 1L, B _ ()"

c c
eto? eto2 eto2

Pr(|[ X3 > ¢) <

With the choice of = 3,¢c = & ,ando = 7”1“(2/5), this leads to:

HEE ¢
= 32
Pr([[Mc5(Q, D) = Q(D)ll2 > §) < —=— = €22
eto PEECYDINENE

Whene > \/6 ‘In2 . (£1In3 —Inn)|||B|||2/¢, the above probability is bound by

(i) Let X be the Gaussian noise vector injected to the intermediatétseas in part (i) of the
proof. We have:

1
IMe.5(Q, D) = QD)% = 1B X% < IBIlI% - 1X1% = llle Bl - =X 1%

The above inequality holds due to the fact th&t|| . < |||R]||e - ||2]|s fOr any matrixR and

vectorz. Let Z = || 21X |2, = (max(LXy,- --max(%XT))—Q. We derive:
IMes(Q, D) = QD)5 < lloBlI% - 5 X%
= ¥, Pr((| M s(Q, D) — Q(D)|%, > €2) < Pr(|llo B2 - Z > €2)
= V&, Pr(||Mcs(Q, D) = Q(D)l|oe > €) < Pr(Z > i)

By Markov’s inequality, we obtain:

¢ _ Bl
Pr(Z > <
2 B =

Note that the above bound is tight, even though Chernoff daam not be applied here.
Next we derive an upper bound for the expected valug.afetY = %X. Clearly,Y;,Ys,--- | Y,

are independent, standard normal random variables. HEfite(1 < i < r) are i.i.d.x? variables,
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i.e., Chi-square random variables with 1-degree of freedidm probability density functioyf; for
Y; is thus:
1 1 _ =z
filx) = ol
Since the function expYis convex and positive, by Jensen’s inequality, for asych that[e!?]
exists, we have:

et®lZl < Blet?] = E[max etyi2] < Z ]E[etyi2] (32)
=1
Meanwhile, for any < 1, we haveE[e!""'] = [F etz\/%x*%e*%dx = (1 — 2t)~2. Combine
this with Equation[(3R), we obtain an upper bound of the etqubealue ofZ:
Inr 1
< _ - _
E(Z] < — — 5. In(1 - 21)

With the choice of = %, we havelE[Z] < 3In7+ 3 In3. SinceV; ), L?; < 1, the sensitivity over
the batch query workloa@ is 1. Sincer = 7@(2/5) we obtain the following:

V€, Pr(||Mcs(Q, D) = Q(D)loo =€) < E[Z]-[||oBl|[5, /€

3
<3lnr+ 51m3) |lleB|||%, /€2

IN

(3 ur o+ gmg) -(21n(2/8)) - || BIII2. / (€6)?

Whene > /(6Inr —3In3)(In2 — In §) /n|||B|||~ /&, the above probability is bound by 0O

6.3. Solving for the Optimal Workload Decompaosition
The optimization program (i.e., Program31)) for worklaktomposition undet (4)-differential
privacy is identical to the one undedifferential privacy (Prograni{9)), except that the formeses
Lo sensitivity in the constraintg; Z; Lf- < 1 whereas the latter use%, sensitivity. Hence, to
solve Prograni(31), we simply adapt Algorithin 1 by modifyihg parts related to these constraints.
The only major modification of Algorithrill lies in the projemt step, which now needs to
projects every column i onto the£, ball of radius 1, instead of th&; unit ball as in Sectiofl5.
Specifically, theL, ball projection is performed by solving the following optiration program:

in |[L—L||% st VjY L2 <1 33
(min L= L], s Jzi: 5 < (33)

The above program can be decoupled iniodependent; regularized sub-problems:

arg min ||l — 1|3, s.t. ?<1
s min, |0 1o D0 <

wherel = L§t),j =12,..,n, L§t) is the j* column of L®). Such a projection can be computed
byl = m Therefore, the projection can be computed efficientlyriedir time. Finally, by

adapting the proofs in sectidn .2, we can draw the conaiusiat the modified Algorithral1 for
optimizing workload decomposition for LRM under underq)-differential privacy also converges
to the a local KKT optimal point linearly. We omit the comp@eiroofs for brevity.
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7. EXPERIMENTS

This section experimentally evaluate the effectivenedsRifl undere- and ¢, §)- differential pri-
vacy definitions. Fok-differential privacy, we compares LRM against six staté¢he-art meth-
ods: Laplace mechanism (LM) [Dwork et al. 2006c], PrivletNWVXiao et al. 2010], hierarchical
mechanism (HM)[[Hay et al. 2010], exponential smoothing NEE$Yuan et al. 201P] (an imple-
mentation of the approximate matrix mechanism [Li et al.d]0described in Append[xAl1), adap-
tive mechanism (AM)[[Li and Miklau 2012] (another implematidon of the approximate matrix
mechanism([Li et al. 2010; Li and Miklau 2012], described ipp&ndiX/A.2) and the exponential
mechanism with multiplicative weights update (MWEM) [Haed 012], whose performance
depends on the dataset. Fey {)-differential privacy, we compare LRM against WM, HM, ESM,
AM, and the Gaussian mechanism (GM) [McSherry and Mirona¥20

Implementations. For AM, we employ the Python implementation that can be iolkthfrom
the authors’ websitehttp://cs.umass.edu/ ~chaoli ). We use the default stopping cri-
terion provided by the authors. For MWEM, we used Hardt et &¥% code listed in the Ap-
pendix of [Hardt et al. 2012]). Note that MWEM needs to tuneaalditional parametef’ which
denotes the number of iterations in order to ensure its peeoce. We follow the experimen-
tal setting in [Hardtetal. 2012]. Specifically, we chodBe e {10,12,14,16} in our experi-
ments and reported the values for the best setting of each case (Strictly speaking, such pa-
rameter tuning violates differential privacy; hence, tbparted results are in favor on MWEM).
For all remaining methods, we implemented them in Matlalg paoblished all code online
(http:/lyuanganzhao.weebly.com/ ). We performed all experiments on a desktop PC with
an Intel quad-core 2.50 GHz CPU and 4GBytes RAM. In each é@xygert, every algorithm is exe-
cuted 20 times and the average performance is reported.

Datasets: We use four real-world data sets in our experime 0; Xu et al. 20113;
[Hardt et al. 20112]:Search LogNet Trace Social Networkand UCI Adult Search Logincludes
search keyword statistics collected fraBoogle Trendsand American Onlinebetween 2004 and
2010. Each unit count is the number of appearances of a plarticeyword.Social Networkcon-
tains information about users in a social network, wher& emit count is the number of users with
a specific degree in the social graplet Traceis collected from a university intranet, where each
unit count is the number of TCP packets related to a partidélaaddress. The total number of
unit counts inSearch LogsNet TraceandSocial Networlare65, 536, 32, 768 and11, 342 respec-
tively. The UCI Adult data was extracted from the census dumatabase in the U.S. Department
of Commerce, it contains 14 features, among which six ardirmoous and eight are categorical.
We use the following strategies to generate the sensititeewdh varying domain size. For the
{Search LogNet Trace Social Network data sets, we transform the original counts into a vector
of fixed sizen (domain size), by merging consecutive counts in order. FeltJCl Adult data set,
we only consider the combingavorkclass, education, occupation, raetributes (with their total
corresponding domain of siZ8 x 16 x 14 x 5 = 8960}) and uniformly choos@& domains. The
counting numbers of their corresponding records are uséueadomain data. We observed that all
the data set$Search LogNet Trace Social Network are dense with their sparsity exactly equals
to 100%, while theUCI Adultdata set is sparse with its sparsity rough®yt ~ 17%.

Workloads: We generated four different types of workloads, nam@liscrete WRange
WMarginal and WRelated In WDiscrete for eachV;; (i.e., the coefficient of thé-th query on
the j-th unit count), we setV;; = 1 with probability 0.02 and¥;; = —1 otherwise. InWRange
each query;; sums the unit counts in arangg, ;] C [1,n],i.e.,W;; = 1fors;, < j <t;, and
W;; = 0 otherwise. The start and end poirtsandt; of each queryy; is randomly generated, fol-
lowing the uniform distributionWMarginalis used in[[Li and Miklau 2012], which contain queries
that are uniformly sampled from the set of all 2-way margin&brWRelatedwe generate inde-
pendent linear counting queries (callease querieswith random weights following0, 1)-normal
distribution. LetA (of sizes x n) denote the workload matrix of thequeries. We also generate
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another matrixC of sizem x s in a similar way The workload matrik/ is then the product of’
andA4, i.e., the linear combination of base queries according.to

Parameters: We test the impact of five parameters in our experiments;, n, m ands. v is
the relaxation factor defined in Program](12)s the number of intermediate queries in LRM, i.e.,
the number of columns i (and also the number of rows ih). n is the number of unit counts
andm is the number of queries in the batch. Finallyis the number of base queries during the
generation ofVRelatedThe ranges and defaults (shown in bold) of the parameterstenmarized
in Tablel. Moreover, we test three different values of thieacy budget: = 1, 0.1 and0.01. For
(e, 0)-differential privacy, following[[Li'and Miklau 2012], weeté = 0.0001.

Table Il. Parameters used in the experiments.

0.0001, 0.001,0.01,0.1,1, 10
{0.8,10,1.2,1.4,1.7,2.1,2.5,3.0, 3.6} x rank(W)
128,256, 512, 1024, 2048, 4096, 8192
64, 128, 256, 512, 1024
s (during the generation aVRelated | {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0} x min(m,n)

MBS

In the experiments, we measure average squared error angutation time of the methods.
Specifically, the average squared error is the average egjdardistance between the exact query
answers and the noisy answers. In the following, Se€fidexamines the impact of andr, which
are only used in LRM. The results provide important insigittdow to set these two parameters to
maximize the utility of LRM. Then, Sectiohs T.2[ta 7.5 compaRM against existing methods.

7.1. Impact of v and » on LRM

In LRM, the relaxation factory controls the difference betwedBl and V. In our first set of
experiments, we investigate the impactodn the accuracy and efficiency of LRM. Figlide 2 and
Figure[3 report the performance of LRM with varying valuesfaindere-differential privacy and
(¢, 0)-differential privacy respectively, using ti&earch Logslataset. Results on other datasets lead
to similar conclusions, and are omitted for brevity.

The results in the Figufd 2 and Figlile 3 show that whinrelatively low (meaning strong pri-
vacy), the error of LRM is not sensitive toregardless of the workload, for all valuespfested in
the experiments((0~* to 10). Only where reaches 1 does large valuesydie.g.,y > 1) show neg-
ative impact on the performance of LRM. This negative effectlatively small undet-differential
privacy; it is more pronounced undet §)-differential privacy. The reason is that the error of LRM
comes from two sources: the added noise and the differertaebe the decompositioB L and
the original workloadi/. When the privacy requirement is strong (i.e., whes relatively low,
or whene-differential privacy is used), the error introduced byxaet decomposition is negligible
compared to the noise added to satisfy differential priv&onversely, with looser privacy require-
ment (highe and ¢, ¢)-differential privacy definition), the noise level becosrew, and the error
in decomposition becomes more evident. Nevertheless, whei.1, its impact is insignificant in
all settings. Meanwhile, LRM runs much faster with a largeOverall,y < 0.1 is a safe choice,
and a larger value of is recommended for applications with strong privacy regmients. In the
following experiments, we fix to 0.01.

r is another important parameter in LRM that determines tiné it the matrix BL that ap-
proximates the workloatd’. r affects both the approximation accuracy and the optinonatpeed.
Whenr is too small, e.g., when < rank(W), our optimization formulation may fail to find a
good approximation, leading to suboptimal accuracy forgbery batch. On the other hand, an
overly larger leads to poor efficiency, as the search space expands deaftyatiVe thus test LRM
with varyingr, by controlling the ratio of to the actual rankank(1V), on theSearch Loglataset.
We record the average squared error and running time of LRMIfthe workloads underand ¢,
d)-differential privacy, and report them in Figurk 4 and Fig8 respectively.
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Fig. 5. Effect ofr on Search Logsinder g, §)-differential privacy

There are several important observations in Figure 4 andr€i§. First, a value of below
rank(W) leads to far worse accuracy (up to two orders of magnitude)pewed to settings with
higher values of. Second, the performance of LRM becomes stable wtexceedd .2 - rank(W)
for e-differential privacy, and.0 - rank (W) for (e, §)-differential privacy. This is because the opti-
mization formulation has enough freedom to find the optinelamposition whem > rank(W).
For (e, 9)-differential privacy, this result is expected, becausg decompositioi’ = BL with
r > rank(WW) can be transformed into a decompositiBfi.” with » = rank(W), by projecting
the columns of.. and the rows of3 onto the range of,, which does not affect thé,-sensitivity of
B. Finally, the amount of computations for workload deconifimsincreases linearly with (note
that both axes are in logarithmic scale). Thus, to balaneefficiency and effectiveness of LRM,
a good value for is betweenrank(WW) and1.2 - rank(W). In subsequent experiments, we set
r=1.2-rank(W) andr = 1.0 - rank(W) for e and €, ¢)-differential privacy, respectively.
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Fig. 9. Effect of domain sizex on workloadWRelatedundere-differential privacy withe = 0.1

7.2. Impact of Varying Domain Size n

We now evaluate the accuracy performance of all mechanisithsvarying domain size.. We
perform all experiments with = 0.1, since the specific value efhas negligible impact on the
relative performance of different mechanisms. Edlifferential privacy, we report the results of
all mechanisms on the 4 different workloads in Figurgs] 6] Zné9, respectively. On workloads
WMarginaland WRelatedthe performance of AM and ESM is comparable to the naive a@pl
mechanism, and significantly worse than the other methausemes by more than an order of
magnitude. This is mainly because the approximation used by AM and ESM does not lead to a
good optimization of the actual objective function forntethusingl, sensitivity. OnWDiscrete
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Fig. 13. Effect of domain sizex on workloadWRelatedunder ¢, §)-differential privacy withe = 0.1 andé = 0.0001

the Laplace mechanism outperforms all other mechanismas teedata is non-sparse and domain
size is relatively small. This is in part due to the fact tHat fueries inVDiscreteare generally
independentwhem > n. Since the other mechanisms do not gain from correlatiomsargueries,
Laplace mechanism is optimal in such a situation. Wherdadledr data-independent mechanisms
incur an error linear to the domain size LRM’s error stops increasing when the domain size
reaches 512. This is because LRM’s error rate depends oarthef the workload matril”, which

is no larger thamin(m, n). This explains the excellent performance of LRM in largemains. On
WRangethe errors of WM and HM are smaller than that of the Laplacehmaism when the
domain size is no smaller than 512. Moreover, WM and HM penfbetter onWRangehan on
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the others workloads, since they are designed to optimizelynfor range queries. Nonetheless,
LRM'’s performance is significantly better than any of theings it fully utilizes the correlations
between the range queries on large domainsV@arginal and WRelated LRM achieves the
best performance in all settings. The performance gap leetw®&M and other methods is over
two orders of magnitude when the domain size reaches 8182e8iRelatedchaturally leads to a
low rank workload matrixV/, this result verifies LRM’s vast benefit from exploiting thev-rank
property of the workload. Finally, we observe some inténgsbehaviors of the data-dependent
method MWEM. The error incurred by MWEM does not scale wethwhe domain size on non-
sparse data sets. Moreover, MWEM performs comparably to ldRMearch LogandNet Trace
when then is very large { > 4096). However, the performance of MWEM is rather unstable; it
incurs much larger error than LRM @®ocial NetworkandUCI Adult, in some cases by more than
two order of magnitude.

Regarding £, §)-differential privacy, we report the accuracy of all medsdn Figure$ 10,11,
[I2 andIB. LRM obtains the best performance in all settingge@ally whem: is large. Its im-
provement over the naive Gaussian mechanism is over twooflenagnitude. AM and ESM have
similar accuracy. For range queries, the performance of BB#MAM is comparable to that of WM
and HM, which are optimized for range counts. However, thmueacy of AM and ESM is rather
unstable on workload&/RangendWMarginal For ESM, this instability is caused by numerical er-
rors in the matrix inverse operations, which can be high wherfinal solution matrix is low-rank.
For AM, the problem is with its post-processing step, whidleg approximation solutions with
unstable quality. The performance of LRM, on the other hadonsistently good in all settings.

7.3. Impact of Number of Queries m

In this subsection, we test the impact of the query set calithnm on the performance of the
mechanisms. We mainly focus on settings when the number efiegim is no larger than the
domain sizeu. For e-differential privacy, the accuracy results are reporteBigure$ 14, 15, 16 and
[I7. OnWRangeandWMarginal LRM outperforms all other mechanisms, whenis significantly
smaller tham. As m grows, the performance of all mechanismsWRangetends to converge.
The degeneration in performance of LRM is due to the lack wfidank property when the batch
contains too many random range queries. Wheis no less than 256, both the WM and HM
achieve comparable accuracy to LRM, since they are optiifizerange queries. OWDiscrete
MWEM is comparable to LRM orJCI Adult data set, one possible reason is that MWEM can
make use of the sparsity of the data\dDiscreteworkload. OnWRelatedvorkload, the accuracy
of LRM is dramatically higher than the other methods, fovalues ofm. This is because the rank
of theWRelatedvorkload is fixed tos, regardless of the number of queries. Finally, we obsere th
onWDiscreteandWRangewhile the performance of other mechanisms does not difteztmirom
data to data, the data-dependent method MWEM generallgpesfbetter on the/Cl Adultdataset
compared to on other datasets, due to the high sparsiifCoAdult

For (e, d)-differential privacy, we report the results in Figufes I8,[20 and_21. We have the
following observations from these results. @fDiscrete WRangeand WRelatedworkload, WM
and HM improve upon the naive Gaussian mechanism; howeunevyarginal WM and HM
incur higher errors than GM. AM and ESM again exhibit simparformance, which is often better
than that of WM, HM, and GM. LRM consistently outperformsdtampetitors in all test cases.

7.4. Impact of Varying Query Rank s

The previous experiments demonstrate LRM’s substantiépeance advantages when the work-
load matrix has low rank. In this set of experiments, we méygantrol the rank of workloadV to
verify this observation. Recall that the parameateletermines the size of the matii%, « s and the
size of the matrix4,,, during the generation of th&/Relatedvorkload. WhenC' and A contain
only independent rows/columnsjs exactly the rank of the workload matrixX = C'A. In Figure
and 2B, we vary from 0.1 x min(m,n) to 1 x min(m,n).
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Fig. 17. Effect of number of queries: on workloadWRelatedundere-differential privacy withe = 0.1

For e-differential privacy, LRM outperforms all other methodgdit least one order of magnitude
whens is low. With increasing, the performance gap gradually closes. This phenomendinmen
that the low rank property is the main reason behind LRM’'saatages. Fore( 0)-differential

privacy, LRM also gives the best performance in all test sase performance advantage decreases

with s, though at a much slower rate compared to the caseldferential privacy.

7.5. Scalability of the Low-Rank Mechanism

Finally, we demonstrate the efficiency and scalability oM.LBndere- and €, ¢)-differential privacy.
The running time of LRM is dominated by the optimization midthat solves the best workload
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decomposition, which is independent of the dataset. Infe[@4 and Figure 25, we vary the domain
sizen from 128 to 8192 and the number of queriedrom 64 to 256, respectively, and report the
total running time of LRM for the 4 different types of workldsiin our experiments. LRM scales
roughly linearly with the domain size and the number of queries (note that both axes are in log-

arithmic scale). Moreover, we observe that for workl¥delatedLRM runs faster when the rank

s of the workload is lower, given the same valuesi@ndm. LRM under ¢, ¢)-differential privacy

is slightly more efficient than underdifferential privacy. This is expected, since we set a $mnal
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value ofr for (e, 9)-differential privacy. In all settings, LRM always ternaites within 20 minutes for
each experiment. In practice, this computation time pafya®fi.RM achieves significantly higher
accuracy than existing methods.

8. CONCLUSIONS AND FUTURE WORK

This paper presents the low rank mechanism (LRM), an opétitz framework that minimizes
the overall error of the results for a batch of linear quetieder differential privacy. The pro-
posed method is the first practical method for a large numiblarear queries, with an efficient and
effective implementation using well established optirtiza techniques. Experiments show that
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LRM significantly outperforms other state-of-the-art el'rﬂzntiall% Erivate query proc_e_ssin% mech-
anisms, often by orders of magnitude. The current desi ocuses on exploiting the cor-
relations between different queries. One interestingctiva for future work is to further oit|m|ze

LRM by utilizing also the correlations between data values,., as is done ir_[Xu et al. 2013;
Rastogi and Nath 2010; Lietal. 2011].
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A. IMPLEMENTATION OF THE APPROXIMATE MATRIX MECHANISM

Li et al. [Li et al. 2010] describes two implementations of tatrix Mechanism, which optimizes
the accuracy of a batch of linear counting queries uregifferential privacy. The first directly
solves the optimization program of the matrix mechanisnciligan be formulated as follows:
in [|A||} tr (WATATTWT 34
i A ot ( ) (34)
whereAT denotes the pseudo-inverse of mattixand|| A|1 . is the maximumZ; norm of column
vectors ofA. It is shown that this problem can be formulated as a semitiefinogram with rank
constraint and solved by a sequence of semidefinite progidowever, it incurs high computa-
tional overhead, which is prohibitively expensive even rfwwderate-sized workload. The second
implementation solves an approximate version of Progka) & follows:
min [|A4|3 tr (WATATTWT) (35)
AER"X" ’
where||A||2,« is the maximumZ, norm of column vectors ofd. Under e-differential privacy,
Program[(3b) is essentially th&, approximate of the original matrix mechanism formulatidhe
solution to Progran(35) presented [in_[Li et al. 2010], hogreis rather complicated, and incurs
high computational costs. In the following two subsectjoms describe two implementation of the
approximate matrix mechanism, tiegponential smoothing mechanigESM) [Yuan et al. 2012]
and the adaptive mechanism (AM) [Li and Miklau 2012] for sotyProgram[(35).

A.l. Exponential Smoothing Mechanism

In this subsection, we present a simpler and more efficidatisq, referred to as thexponential
smoothing mechanis(ESM), based on the methodology exponential smoothingbserve that
| Al|3, ., = max(diag(A” A)), and(A" A)~! = (AT A)T (A has full columnrank). Led/ = AT A,
we reformulate Prograri(B5) as the following positive dédiiptimization problem:
| nin G(M) = max(diag M) tr(WM*W7T) st. M =0
S nxn

Ais given byA = Y7 /Ajvvl, where);, v; are theith eigenvalue and eigenvector of,
respectively. Calculating the second terif¥itrd/ —'W7T) is relatively straightforward. Since it is
smooth, its gradient can be computed-as/ —'WTW M~!. However, calculating the first term
max(diag(M)) is harder since it is non-smooth. Fortunately, inspiredd$premont et al. 2007],
we can still use a logarithmic and exponential function tpragimate this term.

Approximatethe maximum positive number: SinceM is positive definitey = diag( M) > 0.
we lety > 0 be a sufficient small parameter and define:

fulw) = ulogzj: <exp <;>) (36)

We then havenax(v) < f, (v) < max(v) + plogn. The gradient of the objective function in
Equation[[36) with respect tocan be computed as:

of exp (W—TX(U) ) e (%) Vi (37)

S (e () 5 e (1)

1we use the Matlab notations in this paper. Witeiis a matrix,diag(A) denotes a column vector formed from the main
diagonal of A, when A is a vector,diag(A) denotes a diagonal matrix with in the main diagonal entries. Moreover,
max(-) retrieves the largest element of an array.

ACM Transactions on Database Systems, Vol. V, No. N, Arti|@ublication date: January YYYY.



A:40 G. Yuan et al.

Since the second order hessian matrix of the objective immat Equation[(36) can be computed
as:

20y (o) (3 (o))

we have the upper bound of the spectral norm of the heﬂ$j§§éf—v|||2 =|IS =T|||]2 < |[IS||]2 +
T[> < 5 + 5, = 2. Therefore, the gradient of, (v) is Lipschitz continuous with parameter

o2f  diag(exp(%)) exp(77) exp(7)"

w = % If we sety = logn, this becomes a uniformapproximation ofmax(v) with a Lipschitz
continuous gradient with constant= % = 21981 |n our experiments, we uge= B

To mitigate the problems with large numbers, using the ptgyze the logarithmic and exponen-
tial functions, we can rewrite Equatidn {36) and Equatior)) s:

£u(0) = max(v) + plog (Z o <LX()>>

1

—1

gj = Zexp <Uj_vi) , Vi
! j

1

By the chain rule of differentiation in calculus, the grattief G(M) can be computed as:

oG 0
L diag(a—{}) tr (WMWY + fu(v) - (-MT'WTWM)

Here diag(%) denotes a diagonal matrix witg% € R™ as the main diagonal entries. This
formulation allows us to run the non-monotone spectral gmi@d gradient descent algorithm
[Birgin et al. 2000] on the cone of positive semidefinitendde use eigenvalue decomposition to
trim the negative eigenvalues to maintain positive semiétefiess of\/, and iteratively improve the
result. After the algorithm terminates, we return the fihls the optimal solution to the program.

A.2. Adaptive Mechanism

In this subsection, we briefly review the adaptive mechani¢gAM) proposed in
[Ciand Miklau 2012], a heuristic solution for the problem mrogram [(3b). AM considers
the following optimization problem:

Ry
min ; pel st (QOQ)AOA) <1y (38)

where @ is from the singular value decomposition of the workload nmatl’ = QDP with

Q € R™*" D e R"™" P e R"™", andd = diag(D) € R", i.e., the diagonal values dp.
Furthermorep is the Hadamard (entry-wise) produtt, is a column vector of all entries equal to
one. AM then computes the strategy matfiby

A = Qdiag()) € R™*" (39)

wherediag()) is a diagonal matrix with\ as its diagonal values.

The optimization problem if{40) is non-convex since it @m$ quadratic term both in the ob-
jective and the constraint. By changing variable\t®o A = u, we have the following equivalent
optimization problem:

min 4.5t (QOQ)u <1, u>0. (40)

u€R" 4 g
i=1
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By introducing an auxiliary variable € R, the optimization above can be reformulated as the
following semidefinite program:
min Zvidf, st (QOQ)u<l,, [1 v] =0, Vi € [n] (41)

u€ER™ ueR™ 4 7
=1

which can be solved by off-the-shelf interior-point soker

ALGORITHM 4: Adaptive Mechanism for Approximately Solving Problem (35)

. Input: workload matrixiy € R™*™

: Compute the SVD decompositidfi = QD P to obtain@ € R™*™ andd = diag(D)€ R".

. Solve the semidefinite program in Equatibnl(41) and obtain

: Computed’ = Qdiag(v/u) € R™*™ andA” = diag(y/max(0)1, — o) € R"*" where
0i=||A}||3, i=1,..n,0 € R™.

5: Output the strategy matriA:

A WDN P

’
A= I::AA//:| c R(ern)Xn

The complete AM algorithm is summarized in Algoritiith 4. Give workload matrix?, AM
automatically selects a different set of “eigen-queri@sdnd use a nonnegative combination(pf
to compute the strategy matrik with respect to the workload matrix. First, in Step 2 the ailipon
performsthe SVD decomposition Gf to derive the eigen-queriés. Based on the eigen-queri@s
AM aims to find the optimal linear combinatiofA > 0) with A = \/u by solving the semidefinite
program in Step 3. In Step 4, the matti¥ that is constructed is a candidate strategy but may
have one or more columns whose norm is less than the setysitivithis case, AM adds queries
or completes columns in order to further reduce the expestent without raising the sensitivity.
Essentially AM searches over a reduced subspacé. dience, the candidate strategy matrik
solved from the optimization problem ib_(35) does not gutearo be the optimal strategy since it
is limited to a weighted nonnegative combination of the firggkn-queries) in Equation[(3D).

B. ASYMPTOTIC ERROR BOUNDS FOR LRM
B.1. LRM Error Bounds under e-Differential Privacy

In this subsection, we prove the lower bound and upper bofitttecerror incurred by the optimal
workload decomposition solved from Progrdnh (9), and aratie gap between the two bounds.
First, we establish an error upper bound for LRM in the follogdemma.

LEMMA B.1. Error upper bound under e-differential privacy. Given a workload matriXy’
of rank s with singular values{\,..., s}, an upper bound of the expected squared error of
M rum,e(Q, D) w.rt. the optimal decompositioiy = B*L* is2 )7 _, A7 /€.

PrRooF Consider the naive method NOD, which can be considered pesciat case of LRM by
settingB = W and L = I (i.e., identity matrix). ClearlyA(L) = 1. According to Lemm&4l12, the
expected squared error of this decomposition is:

2B(B)A(L)? /e = 2| W%/ =2 A/e
k=1
We reach the conclusion of the lemmax
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Next we derive a lower bound on the squared error for lineanting queries underdifferential
privacy, using geometric analysis under orthogonal ptagadHardt and Talwar 2010]. To do this,
we first present the following lemma, which is used later ingeometric analysis.

LEmMA B.2. Forall orthogonalV € R**"™, we have the following inequality:
Vol(VB?) > Vol(Bj) -n~ 2
whereVol(Bj$) denotes the volume of unit Euclidean ball, aviel(V B}") denotes the volume of
unit ball of the£; norm onR™ after the orthogonal transformation undet.

PROOF By Cauchy-Schwarz inequality we hale||; < /n||x| for all z € R", therefore, the
n-dimensional; ball contains arf, ball of radiusn~—2, i.e. BT D n*%BQ. Given an orthogonal
transformatiori/, we obtainV’ B O n*%VBg. Moreover, because the orthogonal projection of a
Euclidean ball is a lower-dimensional Euclidean ball of saene radius, it holds that =V By =
n~2 Bs. Therefore, the volume df B} is bounded from below by:

Vol(VB?) > Vol(n™2Bj)
= Vol(BS) -n" 2.
O
We are now ready to prove the error lower bound of LRM.

LEMMA B.3. Error Lower Bound under e-differential privacy. Given a workload matrixy’
of ranks with singular valueg \1, . . ., \s }, the expected squared error of asrglifferential privacy

mechanism is at least
2/s
st 28 £ 9
Q E g kl:[l )\k /6

ProoF Corollary 3.4 in[[Hardt and Talwar 20110] proves that argifferential privacy mecha-
nism for linear counting queries incurs expected squanext ap less tharf]

Q (k3 (Vol(PW B1)) /¥ /62)

In the formula aboveBY is the £;-unit ball. Vol(PW BY) is the volume of the unit ball af-
ter the linear transformatio® 1/, in which P is any orthogonal linear transformation matrix
from R® — R*. To prove the lemma, we construct an orthogonal transfooma® = U7,
whereU is obtained form the SVD decomposition &f (W = UXV). According to properties
of SVD decomposition/7U and VVT are identity matrices. Thus, we ha¥l(PW B}) =
Vol(PUVVTEVBY) = Vol(V(VTEV)BY) = Vol(VB}) [1;_, Ax. The last equality holds due
to Lemma 7.5 in[[Hardf and Talwar 2010]. Consider the the emrvodyV B}. By LemmaB.2,

it has a lower bound/ol(B3) - (n~2). Note thatVol(Bs) can be computed using the Gamma
function ]:F(%/;/Q). Using the Stirling’s formula, we know th&i(1 + s/2) is roughly

s

V2me=5/2(s/2)3/2+1/2 so thatVol(B3) is roughly (22¢) 2. Therefore, the lower bound can be
computed ast2 (% (% 1Ty /\k)Q/S/EQ) . We thus reach the conclusion of the lemma

Next we compare the error upper and lower bounds. The asdiyglves a matrix-theory con-
cept called thgeneralized condition numher

2[Hardt and Talwar 2010] used absolute errors, from whichciviwie derived the squared errors.
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Definition B.4. Generalized condition number. Given a workload matriXV’, the generalized
condition number (W) of W defined as the product of the spectral normidfand that of its
pseudo-inverse or equivalently, the ratio between theektrgingular value of¥ to the nonzero

smallest[[Chen and Dongarra 2005; Beltran 2011].
A1
(W) £ W12 - Wl = £

Note that we always have(WW) > 1.

THEOREM B.5. Whens > 5, the gap between the upper and lower bounds of the error redur
by mechanism/;, zas.(Q, D) with the optimal decompositio’ = B*L* is O ((k(W))?2).

PROOF. The theorem is established by comparing the upper and lbagnds in Lemmas Bl.1
andB.3, as follows.

2 22:1 /\i/€2 < 2 22:1 )\%
s s s 2/s — s s 2/s
74 (2? | )‘k) / /€ 74 (25_| || /\s) /
2ns/\%
(3)"° st
2nk(W)?

28 2/8 3
)

IN

k(W)22

S

<

| =~~~

The last inequality holds due to the fact thak (%)s whens > 5. Note that all the inequalities
above are tight, and the equalities hold wh&il’) = 1,i.e.\y = o = ... =A,. O

From the theorem above, we draw the following interestingeobations. (i) When the rank of the
matrix is low (i.e.,s is small) and the batch queries are highly correlatédii{) > 1), then the ratio
of the upper bound to the lower bound is large, meaning thafl lddn potentially achieve lower
error than NOD. (ii) Conversely, when the rank of the matsixull rank (s — n andn < m) and
the batch queries are almost random or independgmt’| — 1), then the achievable error rate of
LRM converges to the upper error bound obtained by NOD. Thegein this situation, NOD might
be good enough and no sophisticated algorithm is neededhvidvalidated by the experimental
results in Section 713). These results are consistent héthvbrk of [Ghosh et al. 2012], who show
that Laplace mechanism is optimal in a strong sense wheneaimgya single linear query.

B.2. LRM Error Bounds under (¢, §)-Differential Privacy

We first derive an upper bound for the error of LRM. Unlike tlese ofe-differential privacy, we
have a tighter error upper bound than that obtained by nagtbaas. We introduce the concepief
coherence of a matrix, which is similar tocoherence [Candes and Recht 2009] ardoherence
[Hardt and Roth 2012] of a matrix in the low-rank optimizatiiterature.

Definition B.6. p-coherence of a matrix. Given a matrixi¥’ with its SVD decomposition that
W =UXV,whereU € R™** ¥ € R*¢ V € R%*", We say the matriXV is p-coherent if

p(W) =max ||Vi|l2, i =1,...,n

whereV; is thei-th column ofV. Note that we have < p(1W) < 1.
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LEMMA B.7. Error Upper Bound under (e, §)-differential privacy. Given a workload matrix
W of rank s with singular valueg A1, ..., A}, an upper bound of the expected squared error of
My, gt (e,5)(Q, D) W.rt. the optimal decompositidy’ = B*L* is (p(W))? > 7 _; A7 /h(e, 6)>.

PrROOFE To prove the lemma, we perform SVD decomp05|t|orW§f obtainingl = UXV.
Then, we build a decompositidd = p(W)UX andL = )V This is a valid decomposition of
W, becauseBL = p(W)UX (W)V =UXV =W.

Next we prove thatA(L) = 1. According to properties of the SVD transformation, column
vectors inV are orthogonal vectors; hence, for every columnn V', we have||V;|.s < p(W).

1/2
Therefore©(L) = max; (3, L) = max; #W_)“Vjug =1
The expected squared error of this decomposition is thendediby:

®(B) = tr(B"B)/h(e,6)*
= tr((p(W)US)T (p(W)UX))/h(e, )
= p(W)*tr(STUTUY))/h(e, §)?

S

= Zx/hea

We thus reach the conclusion of the Iemma.

a

Note that sincepy(W) < 1, the above error bound is no worse than the error obtained®y.N
Meanwhile, the proof essentially describes another simmgligtion whose accuracy is no worse than
NOD.

We now focus on the error lower bound of LRM underd)-differential privacy. This has already
been studied in [Li and Miklau 2013], and we summarize thegutts with our notations in the
following lemma.

LEMMA B.8. Error Lower Bound under (e, d)-differential privacy [[Li and Miklau 2013].
Given a workload matriX? of rank s with singular values{\1, ..., \s}, the expected squared

error of Mp, gz, (e,5)(Q, D) W.r.t. the optimal decompositidi” = B* L* is at least

]

The proof of the above result in [Liand Miklau 2013] is ratltemplicated. In the following we
provide a simple proof.

PrROOF
min IBl% > S min [|Z|% - || B]I%
v]vg: f%ﬁl h(e,d)? ~ nh(e 6)? w=
S (IW]l.)?
nh(e,6)2 *

e (5

The first inequality is due t§_7 (37 LY;) < n. Note that this inequality above is tight, and the
equality holds when every column éflies on the surface of the unit ball. The first equality is due
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to the variational formulation of nuclear norm (see, el§tepro et al. 2004]) that
Wl = min | Ll - [1Bllr. st W = BL.

We thus reach the conclusion of the lemmas

We next compare the error upper bound and the error lowerddomLRM under €, 6)-
differential privacy.

THEOREM B.9. The ratio between the error upper and lower bounds of medmani
My, (e,5)(Q, D) with the optimal decompositio” = B* L* is bounded by) ((k(W))22).

PROOF
We compare the upper and lower boundsin B.7[andl B.8, as fsllow

pW)2 S5 A2 /h(e,8)° _ p(W)2Sh i N
L0 A7 Jh(e,6)? L )

We thus reach the conclusion of the theorem.

The above theorem leads to similar conclusions as in theafaséifferential privacy, except that
here we compare LRM with an improved version of NOD descriimetthe proof of Lemm&B]7.
Meanwhile, the above ratio also involves an additional peterp, i.e., the coherence number of
the workload matrix.
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