
PrivGene: Differentially Private Model Fitting Using
Genetic Algorithms

Jun Zhang1 Xiaokui Xiao1 Yin Yang2,3 Zhenjie Zhang2 Marianne Winslett2,3
1School of Computer Engineering 2Advanced Digital Sciences Center
Nanyang Technological University Illinois at Singapore Pte. Ltd.

{jzhang027, xkxiao}@ntu.edu.sg {yin.yang, zhenjie}@adsc.com.sg
3Department of Computer Science

University of Illinois at Urbana-Champaign
winslett@illinois.edu

ABSTRACT
ε-differential privacy is rapidly emerging as the state-of-the-art
scheme for protecting individuals’ privacy in published analysis re-
sults over sensitive data. The main idea is to perform random per-
turbations on the analysis results, such that any individual’s pres-
ence in the data has negligible impact on the randomized results.
This paper focuses on analysis tasks that involve model fitting,
i.e., finding the parameters of a statistical model that best fit the
dataset. For such tasks, the quality of the differentially private re-
sults depends upon both the effectiveness of the model fitting al-
gorithm, and the amount of perturbations required to satisfy the
privacy guarantees. Most previous studies start from a state-of-the-
art, non-private model fitting algorithm, and develop a differentially
private version. Unfortunately, many model fitting algorithms re-
quire intensive perturbations to satisfy ε-differential privacy, lead-
ing to poor overall result quality.

Motivated by this, we propose PrivGene, a general-purpose dif-
ferentially private model fitting solution based on genetic algo-
rithms (GA). PrivGene needs significantly less perturbations than
previous methods, and it achieves higher overall result quality, even
for model fitting tasks where GA is not the first choice without pri-
vacy considerations. Further, PrivGene performs the random per-
turbations using a novel technique called the enhanced exponential
mechanism, which improves over the exponential mechanism [26]
by exploiting the special properties of model fitting tasks. As case
studies, we apply PrivGene to three common analysis tasks involv-
ing model fitting: logistic regression, SVM classification, and k-
means clustering. Extensive experiments using real data confirm
the high result quality of PrivGene, and its superiority over existing
methods.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—statisti-
cal databases

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

Keywords
Differential privacy, genetic algorithms, model fitting

1. INTRODUCTION
Releasing sensitive information while preserving individuals’

privacy has been an active research subject for decades. The re-
cently proposed notion of ε-differential privacy [9, 10] is rapidly
emerging as the state-of-the-art scheme for this purpose, due to its
strong privacy guarantees, and robustness against adversaries with
background knowledge. ε-differential privacy publishes randomly
perturbed analysis results performed on a sensitive dataset, rather
than the dataset itself. The randomized results must ensure that it is
hard for the adversary to infer any attribute value of any individual
record in the dataset, even if the adversary knows the exact details
of all remaining records.

This paper focuses on enforcing ε-differential privacy on anal-
ysis tasks involving model fitting. Given a statistical model M , a
sensitive database D, and a fitting function f(D, ω) that measures
how well M with parameter vector ω fits dataset D, model fitting
aims to find the best parameter vector ω∗ for M that maximizes
f(D, ω∗). Model fitting is used in a broad class of analysis tasks,
including classification (which searches for the best way to distin-
guish different classes of objects), regression (which finds a math-
ematical model that describes the data best), and clustering (which
computes the optimal assignment of objects to groups). As a real
world scenario, consider an electronic medical records database,
where it is highly beneficial to publish statistical analysis results,
provided that individuals’ information is kept private. Since clas-
sification, regression, and clustering are common tools [11, 22, 28]
for analyzing medical data, privacy-preserving methods for such
analysis are highly valuable.

As we review in Section 2.2, existing studies on differentially
private model fitting mostly develop the private version of a state-
of-the-art, non-private model fitting algorithm. This methodology
incurs two serious drawbacks. First, each such method is limited
to a narrow range of applications that use a specific type of model
fitting algorithms. Second and more importantly, the differentially
private version of a good non-private algorithm does not necessar-
ily yield high-quality results, because such an algorithm may need
large amounts of random perturbations to satisfy ε-differential pri-
vacy, which dominates overall result inaccuracy. Many existing
model fitting algorithms suffer from this problem due to their in-
herent complexity, which we elaborate further in Section 2.2. Con-
sequently, the result quality of their differentially private versions

often lags far behind the non-private versions. Finally, although
generic solutions exist that can in theory render any analysis results
differentially private, the quality of their results tends to be rather
poor, if usable at all.

Motivated by this, we propose PrivGene, a novel framework
for differentially private model fitting based on genetic algorithms
(GA) [14, 16]. Similar to conventional GA, PrivGene starts with a
set of seed parameter vectors, and iteratively improves them by em-
ulating natural evolutions. In each iteration, PrivGene recombines
and modifies existing parameter vectors through crossover and mu-
tation operations, and subsequently filters them through selection
of the top ones that best fit the given dataset. Among these oper-
ations, crossover and mutation are performed independently of the
sensitive data, and, thus, do not have privacy issues at all. Only the
selection step involves the data, and requires random perturbations
to satisfy ε-differential privacy. PrivGene performs differentially
private selections with high accuracy through a novel enhanced ex-
ponential mechanism (EEM), which improves over the exponential
mechanism [26] by exploiting the special properties of the selection
operations.

We define a broad class of model fitting tasks that can be solved
by PrivGene, and demonstrate its use on three common analysis
tools, namely logistic regression, SVM classification and k-means
clustering. Although GA is usually not the first choice to solve
these problems in the non-private setting, PrivGene outperforms all
existing private solutions in terms of overall result quality, due to
the former’s low accuracy loss during perturbations. Extensive ex-
periments using 6 real datasets confirm the high accuracy achieved
by PrivGene and its superiority over previous methods.

The contributions of this paper are summarized as follows: (i)
We propose PrivGene, a novel framework for model fitting under
ε-differential privacy, which applies to a broad class of analysis
tasks. (ii) We design EEM, a novel mechanism for differentially
private parameter vector selection for PrivGene. EEM significantly
improves over the exponential mechanism by utilizing the special
properties of PrivGene. (iii) We apply PrivGene to three common
analysis tasks: logistic regression, SVM classification and k-means
clustering. (iv) We demonstrate through extensive experiments that
PrivGene significantly outperform existing algorithms for enforc-
ing differential privacy on these types of analyses.

2. BACKGROUND
In this section, we introduce the basic concepts of differential

privacy in Section 2.1, and then present an overview of existing
solutions for model fitting under differential privacy.

2.1 Differential Privacy
As stated in Section 1, ε-differential privacy guarantees the hard-

ness for inferring any attribute value of any record in the dataset,
provided that the adversary knows all attribute values of all remain-
ing records. This hardness is controlled by the parameter ε called
the privacy budget. Lower privacy budget indicates stronger pri-
vacy protection, but also noisier results. Formally, let D be any
dataset in the application domain, and D′ be its neighbor database
obtained by replacing a record of D with a new one. Meanwhile, let
A be a randomized algorithm, and O be any possible output of A.
Then, A satisfies ε-differential privacy, if and only if the following
inequality holds [10].

Pr [A(D) = O] ≤ eε · Pr
[
A(D′) = O

]
. (1)

According to the above inequality, a deterministic algorithm can-
not possibly satisfy ε-differential privacy for any value of ε. Hence,
a deterministic analysis algorithm must be randomly perturbed to

satisfy the privacy requirement. Two fundamental approaches for
this purpose are the Laplace mechanism [10] and the exponential
mechanism [26]. The former is limited to analysis tasks that re-
turn numeric results, whereas the latter mainly targets tasks with
categorical outputs. For simplicity, we present these mechanisms
for analysis tasks with a single output – multiple outputs can be
handled by utilizing the composability property of differential pri-
vacy [9]. In particular, composability indicates that when a set of
(say, m) random algorithms satisfy differential privacy with param-
eters ε1, ε2, . . . , εm, respectively, the set of algorithms as a whole
satisfies

(∑
i εi
)
-differential privacy.

Given an analysis task with a numeric output F and a privacy
budget ε, the Laplace mechanism injects into F random Laplace
noise [9] of scale ΔF/ε, where ΔF is called the sensitivity of F .
In particular, ΔF is defined as:

ΔF = max
D,D′ F(D) − F(D′), (2)

where D,D′ are two arbitrary neighbor databases.
For an analysis task with a categorical output (e.g., an ID), in-

jecting random noise no longer yields meaning results. The ex-
ponential mechanism tackles this problem by performing random
perturbations during the selection of the output. Specifically, given
the set Ω of all possible output values, the user assigns each possi-
ble output value ω ∈ Ω a quality score Q(ω); higher scores corre-
spond to better values. Then, the exponential mechanism computes
the probability for selecting each possible output value in the do-
main, and selects one randomly based on these probabilities. In
particular, the probability for choosing a value ω satisfies:

Pr [ω is selected] ∝ exp

(
ε · Q(ω)

2maxω∈Ω ΔQ(ω)

)
, (3)

where ΔQ(ω) is the sensitivity of Q(ω) as a function of the in-
put database, defined similarly to Equation 2, i.e., the maximum
possible difference of Q(ω) for any two neighbor databases. Note
that the exponential mechanism does not make any assumptions on
the quality function Q(ω). However, as we show later in Section 4,
the effectiveness of the exponential mechanism can be significantly
improved, by exploiting special properties of Q(ω).

Based on the Laplace mechanism and the exponential mecha-
nism, a plethora of differentially private methods have been pro-
posed for various analysis tasks. A large number of existing solu-
tions focus on simple aggregate queries such as COUNT and SUM.
For instance, Xiao et al. [32] investigate the problem of range-count
answering under differential privacy, and propose Privlet, an effec-
tive synopsis based on the Laplace mechanism for answering ar-
bitrary range-counts with a fixed privacy budget. Hay et al. [15]
also study count queries, and propose a post-processing method
for improving the accuracy of differentially private synopsis, based
on consistency conditions of the application domain. Cormode et
al. [4] design differentially private data structures for accurately
answering multi-dimensional range-count queries. Li et al [23]
and Yuan et al. [34] propose optimized solutions for answering
a batch of linear counting queries under differential privacy. Be-
sides simple counting queries, there is also work on publishing
data structures consisting of multiple counts. For example, Xu et
al. [33] propose effective methods for publishing differentially pri-
vate histograms. Ding et al. [8] publish data cubes with both pri-
vacy and consistency guarantees. None of these methods, however,
applies to our problem, as model fitting involves a complex op-
timization solving process, which is inherently more challenging
than COUNT/SUM queries and their derivatives.

Differential privacy has also been applied to complex data min-

Table 1: List of common notations

Notation Description

D, n Sensitive database and its cardinality
T Domain of a tuple in D
ω, d Parameter vector for a model, and its dimen-

sionality
f (D, ω) Fitting function that quantifies how well a

model, parameterized by ω, fits D
q (t, ω) Tuple fitting function that describes the quality

of a model, parameterized by ω, fits tuple t
Ω, m Candidate set of parameter vectors, and its car-

dinality
Ω′, m′ Selected set of parameter vectors, and its car-

dinality
r Number of iterations in PrivGene

ing tasks. For instance, Li et al. [24] study privacy-preserving fre-
quent item mining. Friedman et al. [13] investigate private decision
trees. Inan et al. [18] design solutions for record matching under
differential privacy. These problems are orthogonal to ours. Fi-
nally, Kifer and Machanavajjhala point out the limitations of differ-
ential privacy [19], and explore alternative privacy definitions [20].
This work focuses on the original definition of differential privacy.

2.2 Differentially Private Model Fitting
A large class of analysis tasks, including regression, classifi-

cation, and clustering, require model fitting to determine the best
parameter set. Existing approaches to differentially private model
fitting generally follow the methodology of developing the differ-
entially private version of a commonly used algorithm in the non-
private setting. The main challenge faced by this methodology is
that the sensitivity of such algorithms (and, consequently, the scale
of perturbations) is usually prohibitively high, to the extent that di-
rect use of the Laplace mechanism or the exponential mechanism
simply returns noise. For instance, Zhang et al. [35] investigate lin-
ear and logistic regressions under differential privacy. In the non-
private case, the optimal parameter set of linear regression can be
solved trivially, with a small number of matrix operations [35]. Yet,
as shown in [35], even this simple solver incurs prohibitively high
sensitivity. Popular model fitting algorithms for logistic regression,
such as iteratively re-weighted least squares [17], are much more
complex, and incur prohibitive high sensitivity, too.

The solution proposed in [35], called functional mechanism
(FM), injects random noise into the fitting function f , which is the
only part of the model fitting task that involves the sensitive data.
The model fitting task with the noisy f is then published, and sub-
sequently solved by a standard algorithm. The idea is that when
the noisy f is close to the original one, hopefully (but there is no
guarantee) the former leads to parameters of comparable quality as
the latter. The fitting function of linear regression is simple, and ap-
plying FM to it is relatively straightforward. The fitting function of
logistic regression, however, still incurs prohibitively high sensitiv-
ity. [35] tackles this problem by applying FM to a truncated version
of the fitting function consisting of the first few terms of its Taylor
expansion. This approach imposes considerable information loss.
Further, it is limited to fitting functions with a closed-form Tayler
expansion. As we show in Section 5.2 and 5.3, the fitting functions
of SVM classification and k-means clustering cannot be handled
this way as neither of them is differentiable.

Similar to FM, Chaudhuri et al. [3] solves a restricted class of
empirical risk minimization problems under differential privacy, by
injecting noise into the fitting function f . The methods in [3] re-

lies on rather strong assumptions about f , e.g., f must be strongly
concave and doubly differentiable. [3] demonstrates two specific
applications of their methods: logistic regression with a non-zero
regularization term (logistic regression with zero regularization,
however, fails the strongly concave condition), and SVM classi-
fication with certain special loss functions such as Huber loss (the
more commonly used hinge loss function is not differentiable [29]).
Even for these two applications, however, the effectiveness of their
methods is relatively unstable, and highly sensitive to the choice of
the regularization factor. The parameter tuning algorithm in [3] for
selecting an appropriate regularization factor consumes a consider-
able portion of the privacy budget, reducing the overall accuracy of
their methods.

Rubinstein et al. [29] investigate differentially private kernel
SVMs. Their main focus lies in tackling different types of kernels,
including those that involves infinite dimensionality. However, the
solutions in [29] still assume a standard SVM solver, which in-
curs high sensitivity and large amounts of noise, as we show in the
experiments. Finally, Kifer et al. [21] improve both the accuracy
and the applicability of [3], by using a relaxed privacy definition.
This is orthogonal to our work since we focus on the stronger ε-
differential privacy definition.

GUPT [27] is a general-purpose differentially private analysis
system based on the sample-and-aggregate framework [31], which
applies to all analysis tasks whose results are not affected by the
number of records in the dataset (e.g., AVG is supported, but
COUNT and SUM are not). The main idea is to partition the dataset
into smaller blocks, and run the analysis algorithm on each of the
blocks without privacy considerations. Then, GUPT computes a
differentially private average on the results from different blocks.
The main strength of GUPT is its general applicability and ease of
use. These come at a price of low result quality, however, as the
differentially private averaging step can still incur high sensitivity
for larger output domains. Overall, all existing solutions are lim-
ited to the implicit assumption that a model fitting task should be
solved using the same algorithm as in the non-private case. Priv-
Gene, presented next, lifts this restriction, and achieves high result
quality for a broad class of model fitting tasks.

3. PRIVGENE
Let D ∈ T n be a sensitive database containing n tuples sampled

from domain T , and f(D, ω) be the fitting function that measures
how well a parameter vector ω fits the data D. Our goal is to find
the best parameter vector ω∗ that maximizes f(D,ω∗). Unlike
many existing solutions reviewed in Section 2, PrivGene does not
rely on any restrictive assumptions on f , except that the sensitivity
of f should be bounded and reasonably small. Table 1 summarizes
frequent notations used throughout the paper.

Algorithm 1 shows the general framework of PrivGene, which
involves three main inputs: D (the sensitive database), f (the fit-
ting function), ε (the privacy budget), as well as three more system
parameters: m (the size of the candidate set), m′ (the size of the
selected set), and r (the number of iterations). The choice of m,
m′, and r is discussed towards the end of this section. PrivGene
initializes the candidate set Ω with m random parameter vectors
(Line 1 in Algorithm 1), and refines them with r iterations. In each
iteration (Lines 3-9), PrivGene chooses m′ best parameter vectors
from Ω in a differentially private manner, and places them into the
selected set Ω′ (Line 3). Then, the algorithm generates new param-
eter vectors by performing crossover and mutation operations over
existing ones in Ω′, and forms a new candidate set with the new
vectors (Lines 6-9). Finally, after the last iteration, the best parame-

Algorithm 1 PrivGene (D, f , ε, m, m′, r): returns ω
Input: D, f : sensitive dataset and its fitting function

ε: privacy budget
m, m′: sizes of candidate set Ω and selected set Ω′, respec-
tively
r: number of iterations

Output: ω: best parameter vector identified by PrivGene
1: Initialize candidate set Ω with m randomly generated vectors
2: for i = 1 to r − 1 do
3: Compute Ω′ = DP_Select(D, f,Ω, m′, ε/r)
4: Set new candidate set Ω to empty
5: for j = 1 to m/2 do
6: Randomly choose two vectors ω1, ω2 ∈ Ω′

7: Compute (v1, v2) = Crossover(ω1, ω2)
8: Call Mutate(v1) and Mutate(v2)
9: Add v1, v2 to Ω

10: end for
11: end for
12: Compute {ω} = DP_Select(D, f,Ω, 1, ε/r)
13: return ω

Parent 1

Parent 2

Offspring 1Intermediate 1

Intermediate 2 Offspring 2

Crossover Mutation

Figure 1: An example of crossover and mutation on 4-means
clustering.

ter vector is selected (again with perturbations to satisfy differential
privacy), and returned as the final result (Lines 10-11).

There are three major components in PrivGene: Crossover,
Mutate, and DP_Select. Crossover and Mutate operate en-
tirely on the parameter vectors, and do not involve the sensitive
data at all. Hence, algorithms in the traditional, non-private set-
ting apply to them. In the following we describe Crossover and
Mutate in our specific implementation; we emphasize that details
of these two functions are not the main contribution of this pa-
per, and PrivGene works with any algorithms for them as long as
they do not involve the dataset D. In particular, our realization
of Crossover takes as input two parent vectors ω1 and ω2, and
recombines their elements to obtain two new vectors v1 and v2.
Let d be the dimensionality of a parameter vector. We perform
the recombination by (i) choosing a random number d′ < d, and
subsequently (ii) computing v1 = (ω1

1 , . . . , ω
1
d′ , ω

2
d′+1, . . . , ω

2
d),

and v2 = (ω2
1 , . . . , ω

2
d′ , ω

1
d′+1, . . . , ω

1
d), where ωi means the i-th

value in vector ω. The Mutate operation on a parameter vector ω is
implemented by (i) choosing a random d′ < d, and (ii) adding ran-
dom noise to ωd′ . In our implementation, the noise’s absolute value
equals 5% of the domain of ωd′ in the first iteration of PrivGene,

Algorithm 2 DP_Select (D, f , Ω, m′, εs): returns Ω′

Input: D, f : sensitive dataset and its fitting function
Ω: candidate set of parameter vectors
m′: number of parameter vectors to select from Ω
εs: total amount of privacy budget used for selecting Ω′

Output: Ω′: set of selected parameter vectors
1: Initialize Ω′ to empty
2: For each ω ∈ Ω, compute f(D, ω)
3: for i = 1 to m′ do
4: Use privacy budget εs/m′ to apply the exponential mecha-

nism (Section 2.1) or the enhanced exponential machanism
(Section 4) to select the parameter vector ω∗ from Ω that
aims to maximize f(D, ω∗)

5: Remove ω∗ from Ω, and add ω∗ to Ω′

6: end for
7: return Ω′

and decreases by 5% after each iteration; the sign of the noise is
also random. The parameter vectors after the Crossover and Mu-
tate operations are called the offsprings.

Figure 1 illustrates an example of crossover and mutation in a
4-means clustering problem. Tuples in the database are projected
to a 2-dimensional space, denoted by circles. On the left side of
the figure, there are two parent center sets, with centers denoted
by solid squares and triangles respectively. After crossover, these
two parent center sets exchange a pair of centers, generating two
intermediate center sets shown in the middle of the figure. Another
mutation operation follows, by randomly moving one of the centers
to a new location in the space. This leads to the final output of
new offspring center sets on the right side of the figure. Note that
crossover and mutation do not necessarily enhance the quality of
input solutions. In Figure 1, intermediate 1 and offspring 1 benefit
from these genetic operations while intermediate 2 and offspring
2 have lower quality than their parents. Hence, it is necessary to
perform an effective selection step, presented next.

The selection of top-quality parameter vectors is more compli-
cated since it requires access to the sensitive dataset D, and thus,
must be performed in a randomized manner to satisfy differential
privacy. Algorithm 2 shows the DP_Select algorithm for this pur-
pose, which takes 5 inputs: the data D, the fitting function f , the
candidate set Ω, the number m′ of vectors to select from Ω, and the
amount of privacy budget εs for this operation. DP_Select divides
εs into m′ equal shares, and uses each share to select one param-
eter vector ω∗ under differential privacy, with the goal of maxi-
mizing the f(D, ω∗), i.e., ideally ω∗ should be the best fit for the
data among all parameter vectors in Ω. The selection of ω∗ is per-
formed using either the exponential mechanism (EM) described in
Section 2.1 or the enhanced exponential mechanism (EEM), which
we elaborate in Section 4.

The correctness of PrivGene directly follows the composability
property of differential privacy, described in Section 2.1. Specif-
ically, PrivGene performs DP_Select (the only step that involves
the sensitive data) r times, each with privacy budget ε/r, which
consumes ε overall. Inside DP_Select, its privacy budget (i.e.,
εs = ε/r) is used for m′ invocations of EM or EEM, each with
budget εs/m′ = ε/(r ·m′). Hence, we reach the following lemma.

LEMMA 1. PrivGene satisfies ε-differential privacy.

Parameter Settings. Next, we clarify the selection of parameters
m, m′, and r, which are the size of the candidate set, the number
of parameter vectors selected in each iteration, and the total num-
ber of iterations, respectively. Existing studies [6, 7, 30] on robust

parameters for GA have suggested that without domain-specific in-
formation, m = 200 and m′ = 10 generally lead to good results.
We adopt the same setting in PrivGene, except that we set m′ = 1
when the enhanced exponential mechanism is adopted (for selec-
tion of top-quality parameter vectors). We will explain the reason
in Section 4.

On the other hand, the choice of r for PrivGene is more sutble.
In the non-private setting, GA is usually run until convergence, or
for a large number of iterations, in order to find high-quality so-
lutions. However, in PrivGene, a larger value of r also has the
negative effect of reducing the privacy budget εs = ε/r used in
each invocation of DP_Select (to select m′ top-quality parameter
vectors), leading to more noisy selections. Hence, the choice of r
should balance the extensiveness of the search and the noisiness in
the selections. This balancing is affected by three parameters: the
total privacy budget ε, the total number of records n in the dataset
D, and the number of top-quality parameter vectors to be selected
in each iteration of PrivGene. Intuitively, a higher amount of to-
tal budget ε as well as a larger number of data samples reduce the
randomness in the selection process, which allows using a larger
r. Hence, we heuristically set r to c · (n · ε)/m′, where c is a
constant determined by the experiments. We will choose an appro-
priate value for c in the experimental section.

Finally, the performance of PrivGene is also affected by how the
initial candidate set Ω is generated (see Line 1 in Algorithm 1).
Intuitively, if Ω contains a parameter vector ω that is reasonably
good, then, ω has a high chance to be chosen by DP_Select in the
first iteration, and subsequently improved in later iterations into a
near-optimal solution. Conversely, if all parameter vectors in Ω
are of poor quality, PrivGene may not be able to refine them into
good solutions before depleting its privacy budget. As we discuss
in Section 5, for certain model fitting tasks (e.g., logistic regression
and SVM classification), it is possible to heuristically insert into
Ω some parameter vectors that provide relatively good initial solu-
tions without using any privacy budget. When this cannot be done
(e.g., for k-means clustering), we simply initiates Ω with random
parameter vectors.

4. ENHANCED EXPONENTIAL MECHA-
NISM

This section focuses on EEM, an enhanced version of the expo-
nential mechanism (described in Section 2.1) for PrivGene’s set-
tings. EEM aims at applications whose fitting function f can be
expressed in the following form:

f(D, ω) = h(ω) +
∑
t∈D

q(t, ω). (4)

In the above equation, h(ω) is a function whose result is indepen-
dent of the sensitive data D; in other words, releasing the output
of h does not violate personal privacy. The tuple fitting function
q(t, ω) measures how well the model fits a tuple t in the data. As
we show later in Section 5, a broad class of model fitting tasks can
be expressed in the form of Equation 4. It is worth mentioning that
when the above assumption does not hold, EEM gracefully reduces
to the exponential mechanism, as we show soon.

EEM follows the same general idea as the exponential mecha-
nism, which consists of three steps: (i) assign each possible output
value ω a fitting score f(D, ω); (ii) compute a probability for each
possible output ω; and (iii) select an output value randomly based
on the probabilities calculated in Step (ii). The main difference
between EEM and the exponential mechanism is in Step (ii), i.e.,
probability computation. This is a vital step that determines the

result quality of the whole mechanism. In general, the higher the
impact of f on the probability of ω to be selected, the better the
results, but also the higher amount of released private information.
To see this, consider two extreme cases. First, without privacy con-
siderations, we can simply assign probability 1 to the output value
ω∗ with the highest fitting score f(D, ω∗), and 0 to all other possi-
ble outputs. Clearly, this assignment always returns the result of the
highest fitting score. Second, when f(D, ω) has no impact at all
on the probability of ω, the probabilities for all output values are
identical, leading to no leakage of private information, but com-
pletely random results. The goal of EEM, thus, is to maximize the
impact of f(D, ω) in the probability assignment, while satisfying
differential privacy requirements.

Recall from Section 2.1 that, to achieve ε-differential privacy
with the exponential mechanism, the probability of an output value
ω is proportional to exp (ε · f(D, ω)/Δ), where

Δ ≥ 2 max
ω∈Ω,D,D′ f(D, ω)− f(D′, ω), (5)

and D,D′ are two arbitrary neighbor databases.
Observe that the impact of f(D, ω) is negatively correlated to Δ,

which we call the dampening factor. As an extreme case, when the
dampening factor far exceeds ε·f(D, ω), the fraction ε·f(D, ω)/Δ
approaches 0, and, consequently, each output value ω is assigned
an almost identical probability. The major difference between EEM
and the exponential mechanism is that the former uses a different
dampening factor that is no larger than the latter does. Specifically,
when Equation 4 holds, EEM computes the probability of selecting
output value ω with the following dampening factor,

Δ ≥ min

{
2 max

t,t′∈T ,ω∈Ω
q(t, ω)− q(t′, ω),

2 max
t∈T ,ω,ω′∈Ω

q(t, ω)− q(t, ω′)

}
. (6)

Otherwise, EEM simply follows the exponential mechanism by set-
ting the dampening factor as inequality 5.

To prove the correctness of EEM with the assumption in Equa-
tion 4, we first introduce the following two lemmas.

LEMMA 2. EEM satisfies ε-differential privacy, if

Δ ≥ 2 max
t,t′∈T ,ω∈Ω

q(t, ω)− q(t′, ω). (7)

PROOF. Let D,D′ ∈ T n be any neighbor databases and t and
t′ denote the differing tuples in D and D′ respectively. Given any
ω ∈ Ω, we have

max
D,D′ f(D, ω)− f(D′, ω) = max

D,D′ q(t, ω)− q(t′, ω)

= max
t,t′∈T

q(t, ω)− q(t′, ω).

Thus, the dampening factor in the lemma satisfies Equation 5 as

Δ ≥ 2 max
t,t′∈T ,ω∈Ω

q(t, ω)− q(t′, ω)

= 2 max
ω∈Ω,D,D′ f(D, ω)− f(D′, ω).

The proof is complete.

LEMMA 3. EEM satisfies ε-differential privacy, if

Δ ≥ 2 max
t∈T ,ω,ω′∈Ω

q(t, ω)− q(t, ω′). (8)

PROOF. Let D and D′ be any neighbor databases and t and t′

denote the differing tuples in D and D′ respectively. For any output
ω ∈ Ω of enhanced exponential mechanism E , we have

Pr (E(D) = ω)

Pr (E(D′) = ω)

=
exp (ε · f(D, ω)/Δ)∑

ω′∈Ω exp (ε · f(D, ω′)/Δ)

/ exp (ε · f(D′, ω)/Δ)∑
ω′∈Ω exp (ε · f(D′, ω′)/Δ)

≤ exp (ε · (f (D,ω)− f (D′, ω)) /Δ)

minω′∈Ω exp (ε · (f (D,ω′)− f (D′, ω′)) /Δ)
.

With the assumption given in Equation 4, the above inequality
can be rewritten as:

Pr (E(D) = ω)

Pr (E(D′) = ω)
≤ exp (ε · (q (t, ω) − q (t′, ω)) /Δ)

minω′∈Ω exp (ε · (q (t, ω′) − q (t′, ω′)) /Δ)

= max
ω′∈Ω

exp
(
ε · ((q (t, ω) − q

(
t′, ω

))− (q (t, ω′)− q
(
t′, ω′))) /Δ)

= max
ω′∈Ω

exp
(
ε · (q (t, ω)− q

(
t, ω′) + q

(
t′, ω′)− q

(
t′, ω

))
/Δ
)
.

On the other hand,

Δ ≥ 2 max
t∈T ,ω,ω′∈Ω

q(t, ω) − q(t, ω′)

≥ max
t∈T ,ω,ω′∈Ω

q(t, ω) − q(t, ω′)

+ max
t′∈T ,ω,ω′∈Ω

q(t′, ω′)− q(t′, ω)

≥ max
t,t′∈T ,ω,ω′∈Ω

q(t, ω) − q(t, ω′) + q(t′, ω′)− q(t′, ω).

Thus, Pr (E(D) = ω) is no more than to eε · Pr (E(D′) = ω),
which completes the proof.

Combing the results of Lemma 2 and Lemma 3, we prove the
correctness of EEM, formally stated in Theorem 1.

THEOREM 1. EEM satisfies ε-differential privacy with damp-
ening factor in Inequality 6.

Let Δ1 denote the right hand side of Inequality 7 and Δ2 denote
that in Inequality 8. According to proofs of Lemmas 2 and 3, Δ1

is exactly the dampening factor used in the exponential mechanism
while Δ2 is a new dampening factor designed specifically for Priv-
Gene. The dampening factor of EEM is the smaller of the two,
which is no larger than Δ1. Further, when used in PrivGene, Δ2 is
usually smaller than Δ1. The intuition is that as more iterations are
performed, the quality of the parameter vectors in the candidate set
becomes increasingly close to each other, since it converges to (pos-
sibly local) optimal. This means that it is likely that the maximum
value of q(t, ω)− q(t, ω′) gradually decreases with the number of
iterations performed, leading to decreasing Δ2. Δ1, on the other
hand, is not significantly affected by this phenomenon. Hence, the
gap between Δ1 and Δ2 expands with the number of iterations, as
confirmed by our experiments. The following example illustrates
that Δ2 can be considerably smaller than Δ1 with candidates of
similar fitting quality.

EXAMPLE 1. Consider that we have a database D that con-
tains one-dimensional tuples in the integer domain T = [0, 10],
and candidate set Ω = {6, 7, 8}. The fitting function f(D,w) is
defined as −

∑
t∈D (t− ω)2, i.e., we aim to identify the ω that

best approximates the mean of the tuples. To enforce ε-differential
privacy using EEM, the dampening factor Δ ≥ min {Δ1,Δ2},
where Δ1 = 128 under the worst case t = 8, t′ = 0, ω = 8 and
Δ2 = 56 under the worst case t = 0, ω = 6, ω′ = 8.

In general, the benefit of Δ2 is more pronounced when the can-
didate set does not contain two parameter vectors that differ sig-
nificantly from each other. Therefore, we set m′ = 1 for Priv-
Gene+EEM, i.e., each iteration selects exactly one parameter vec-
tor ω from the candidate set to generate offsprings for the next it-
eration. This ensures that no two offsprings would have significant
differences (as they are all mutated from ω). As such, when those
offsprings are given to the tuple fitting function as inputs, the out-
puts of the function would be similar, leading to a small value of
Δ2, and thus, high accuracy of EEM. In particular, as we show in
Section 5, when we set m′ = 1 for for logistic regression and SVM
classification, Δ2 is bounded by a multiple of the mutation scale,
which leads to a dramatic accuracy boost compared to EEM with
other values of m′ as well as EM. Hence, in these applications, it
is strongly preferred to use EEM and set m′ = 1 in PrivGene.

5. APPLICATIONS
This section applies PrivGene to three common model fitting

tasks: logistic regression, SVM classification, and k-means clus-
tering.

5.1 Logistic Regression
Let D be a database containing n tuples from a domain T ,

such that each tuple has d attributes X1, X2, . . . , Xd−1, Y , and
attribute Y has a binary domain {0, 1}. For each t = (x, y) =
(x1, x2, . . . , xd−1, y), we assume without loss of generality1 that
|xk| ≤ 1 for k ∈ {1, 2, . . . , d− 1}, i.e., T = [−1, 1]d−1×{0, 1}.
A logistic regression model built on D is parameterized by a vector
α and a constant β (called the bias), as formalized in Definition 1.

DEFINITION 1 (LOGISTIC REGRESSION). Logistic regres-
sion on D predicts ŷ = 1 given x̂ = (x̂1, x̂2, . . . , x̂d−1) with
probability

Pr {ŷ = 1 | x̂} = 1/
(
1 + exp(−x̂Tα∗ − β∗)

)
,

where α∗ is a vector of d−1 real numbers and β∗ is a real number,
such that

(α∗, β∗) = argmax
α,β

∑
t∈D

(
y
(
xTα + β

)
− log

(
1 + exp

(
xTα + β

)))
.

To apply PrivGene to logistic regression, each parameter vector
in PrivGene has d elements: the first d−1 elements represent α and
the last one represents β. In what follows, we focus on deriving the
dampening factor Δ used in EEM for selecting the top parameter
vectors.

First, given the fitting function in Definition 1, the tuple fitting
function for t = (x, y) can be expressed as

q(t, ω) = y
(
xTα+ β

)
− log

(
1 + exp

(
xTα+ β

))
. (9)

To derive Δ, it suffices to derive Δ1 and Δ2, i.e., the right hand
sides of Inequalities 7 and 8, respectively.

Consider Δ1. Recall that

Δ1 = 2 max
t,t′∈T ,ω∈Ω

q(t, ω)− q(t′, ω)

= 2max
ω∈Ω

(
max
t∈T

q(t, ω)−min
t∈T

q(t, ω)

)
. (10)

1This assumption can be easily enforced by changing each xk to
xk−0.5(maxk −mink)

(maxk −mink)
, where mink and maxk denote the minimum

and maximum values in the domain of Xk.

By Equation 9, we have q(t, ω) ≤ 0 for any t ∈ T . Therefore,
maxt∈T q(t, ω) = 0. To derive mint∈T q(t, ω), we differentiate
two cases: xTα+ β ≥ 0 and xTα+ β < 0.

When xTα+ β ≥ 0, by Equation 9, we have

min
t∈T

q(t, ω) = min
t∈T

y
(
xTα+ β

)
− log

(
1 + exp

(
xTα+ β

))
=min

t∈T
− log

(
1 + exp

(
xTα+ β

))
≥min

t∈T
−
(
xTα+ β + 1

)

=−
(

d−1∑
k=1

|αk|+ β + 1

)
≥ −

(
d∑

k=1

|ωk|+ 1

)
.

On the other hand, when xTα+ β < 0, we have

min
t∈T

q(t, ω) = min
t∈T

y
(
xTα+ β

)
− log

(
1 + exp

(
xTα+ β

))
≥min

t∈T
y
(
xTα+ β

)
− 1

=

(
−

d−1∑
k=1

|αk|+ β

)
− 1 ≥ −

(
d∑

k=1

|ωk|+ 1

)
.

Combining the above inequalities, we have

Δ1 ≤ 2max
ω∈Ω

(
d∑

k=1

|ωk|+ 1

)
. (11)

Now consider Δ2. Recall that

Δ2 = 2 max
t∈T ,ω,ω′∈Ω

q(t, ω)− q(t, ω′)

= 2 max
ω,ω′∈Ω

(
max
t∈T

q(t, ω)− q(t, ω′)

)
. (12)

By Equation 9,

q(t, ω) − q(t, ω′) =

y
((

xTα+ β
)
−
(
xTα′ + β′

))
− log

(
1 + exp

(
xTα+ β

)
1 + exp (xTα′ + β′)

)
.

If xTα+ β ≥ xTα′ + β′, then

max
t∈T

q(t, ω)− q(t, ω′) ≤ max
t∈T

y
((

xTα+ β
)
−
(
xTα′ + β′

))

=max
t∈T

xT (α− α′)+ (β − β′) ≤
d∑

k=1

∣∣ωk − ω′
k

∣∣ .
On the other hand, if xTα+ β < xTα′ + β′, then

max
t∈T

q(t,ω)− q(t, ω′) ≤ max
t∈T

− log

(
1 + exp

(
xTα+ β

)
1 + exp (xTα′ + β′)

)

≤max
t∈T

− log

(
exp

(
xTα+ β

)
exp (xTα′ + β′)

)

=max
t∈T

(
xTα′ + β′

)
−
(
xTα+ β

)
≤

d∑
k=1

∣∣ωk − ω′
k

∣∣ .
Based on the above inequalities, we have

Δ2 ≤ 2 max
ω,ω′∈Ω

d∑
k=1

∣∣ωk − ω′
k

∣∣ . (13)

Combining Inequalities 6, 11, and 13, we have

Δ ≥ min

{
2max

ω∈Ω

(
d∑

k=1

|ωk|+ 1

)
, 2 max

ω,ω′∈Ω

d∑
k=1

∣∣ωk − ω′
k

∣∣} .

Observe that when m′ = 1 (i.e., only one parameter vector is
selected in each iteration), after the first iteration, all candidate pa-
rameter vectors are generated from the same parent. Hence, the L1

distance between any two of them is bounded by twice the mutation
scale. Therefore, Δ2 is bounded by 4 times the mutation scale. For
any m′ �= 1, this bound no longer holds, and Δ2 can be as large
as twice the size of the parameter vector domain. Hence, setting
m′ = 1 provides a significant accuracy boost to EEM. The accu-
racy of EM, however, is not dramatically affected by m′, since Δ1

can always be as large as twice the domain size for any m′.

5.2 SVM Classification
Support vector machine (SVM) [5] is a popular tool for clas-

sification, which predicts the labels of new observations based on
existing observations with labels. For simplicity, we focus on SVM
with linear kernels [29]; our solution can be extended to SVMs with
non-linear kernels similarly as in [29].

Let D ∈ T n be a database containing n tuples sampled from a
d-dimensional domain T = [−1, 1]d−1 × {−1, 1}. We denote the
i-th (i ∈ [1, d − 1]) dimension of T as Xi, and the last dimension
of T as Y . For ease of exposition, we use x to denote a vector in
[−1, 1]d−1, and use t = (x, y) to denote a tuple in D. A linear
SVM classifier on D is defined as follows.

DEFINITION 2 (SVM CLASSIFICATION). Given
x̂ = (x̂1, x̂2, . . . , x̂d−1), a linear SVM classifier on D pre-
dicts the Y value associated with x̂ as:

ŷ =

{
1, if x̂Tα∗ + β∗ > 0
−1, otherwise

where α∗ is a vector of d−1 real numbers and β∗ is a real number,
such that

(α∗, β∗) = argmax
α,β

−

⎛
⎝1

2
||α||2 + C

∑
(x,y)∈D

ξ(x, y)

⎞
⎠ ,

where ξ(x, y) = max
{
1− y(xTα+ β), 0

}
, referred to as the

hinge-loss function.

To solve SVM classification with PrivGene, we define each pa-
rameter vectors as a d-dimensional vector, such that the first i
(i ∈ [1, d− 1]) dimensions correspond to α and the last dimension
correspond to β. In addition, the tuple fitting function is defined as

q(t, ω) = −Cmax
{
1− y(xTα+ β), 0

}
, (14)

which is in accordance with Definition 2. As for the damping factor
Δ for EEM, we derive it based on an analysis of Δ1 and Δ2, as
formulated in Equations 10 and 12.

First, let us consider Δ1. By Equation 10, we can calculate an
upperbound for Δ1 based on the maximum and minimum possible
values of q(t, ω) for t ∈ T . By Equation 14, maxt∈T q(t, ω) = 0
trivially holds. Meanwhile,

min
t∈T

q(t, ω) = min
t∈T

−Cmax
{
1− y(xTα+ β), 0

}
= −Cmax

t∈T

(
1 +

∣∣∣xTα+ β
∣∣∣)

≥ −C

(
d∑

k=1

|ωk|+ 1

)
.

Therefore, we have an upperbound of Δ1 as follows:

Δ1 ≤ 2C max
ω∈Ω

(
d∑

k=1

|ωk|+ 1

)
. (15)

Next, we derive an upperbound of Δ2. This, by Equation 12,
can be achieved by upperbouding q(t, ω) − q(t, ω′) for any pair
of parameter vectors ω, ω′ and any tuple t. Observe that, for any
t = (x, y), we have

q(t, ω)− q(t, ω′)

= C max
{
1− y(xTα′ + β′), 0

}
− C max

{
1− y(xTα+ β), 0

}

= C · 1− y(xTα′ + β′) +
∣∣1− y(xTα′ + β′)

∣∣
2

− C · 1− y(xTα+ β) +
∣∣1− y(xTα+ β)

∣∣
2

≤ C · 1
2
y
((

xTα+ β
)
−
(
xTα′ + β′

))
+ C · 1

2

∣∣∣y ((xTα+ β
)
−
(
xTα′ + β′

))∣∣∣
≤ C

∣∣∣y ((xTα+ β
)
−
(
xTα′ + β′

))∣∣∣ .
Meanwhile,

max
t∈T

C
∣∣∣y ((xTα+ β

)
−
(
xTα′ + β′

))∣∣∣
=max

t∈T
C
∣∣∣y (xT (α− α′)+ (β − β′))∣∣∣ = C

d∑
k=1

∣∣ωk − ω′
k

∣∣ .
Therefore, we have the following upperbound for Δ2:

Δ2 ≤ 2C max
ω,ω′∈Ω

d∑
k=1

∣∣ωk − ω′
k

∣∣ . (16)

By combining the upperbounds for Δ1 and Δ2, we obtain the
following dampening factor Δ:

Δ ≥ 2C ·min

{
max
ω∈Ω

(
d∑

k=1

|ωk|+ 1

)
, max
ω,ω′∈Ω

d∑
k=1

∣∣ωk − ω′
k

∣∣} .

Similar to the case of logistic regression, when (and only when)
m′ = 1, Δ2 is bounded by 2C times the mutation scale. Hence,
EEM with m′ = 1 leads to high accuracy for PrivGene.

5.3 k-means Clustering
Let k be a positive integer, and D be a private database contain-

ing n tuples from a domain T = [−1, 1]d. Given k and D, a k-
means clustering [25] on D identifies k elements c1, c2, . . . , ck ∈
T (referred to as centers), such that each tuple in D has a small
distance to at least one center. The formal definition is as follows:

DEFINITION 3 (k-MEANS CLUSTERING). A k-means clus-
tering on D returns a set C = {c1, c2, . . . , ck}, such that ci ∈ T
(i ∈ [1, d]) and

C∗ = argmax
C

−
∑
t∈D

dist(t,C), (17)

where dist(t,C) = minc∈C ||t − c||22.

To adopt PrivGene for k-mean clustering, we define each param-
eter vector ω as a k ·d-dimensional vector from [−1, 1]kd, such that
the (k · i+ j)-th element in ω represents the j-th coordinate of the
i-th center ci. For convenience, we abuse notation and define ωi as
a d-dimensional vector whose j-th element equals the (k · i+ j)-th

element in ω, i.e., ωi represents ci. Then, the tuple fitting function
for any tuple t ∈ D is defined as

q (t, ω) = − min
i∈[1,d]

||t− ωi||22.

To derive the dampening factor Δ for EEM, we need to calculate
an upperbound for Δ1 (in Equation 10) and Δ2 (in Equation 12).

For Δ1, we have

Δ1 ≤ max
t,t′∈T ,ω∈Ω

q(t, ω)− q(t′, ω) ≤ max
t∈T ,ω∈Ω

−q(t, ω)

=max
C∈Ω

max
t∈T

min
c∈C

||t− c||22 ≤ max
C∈Ω

min
c∈C

max
t∈T

||t − c||22.
(18)

On the other hand, we find it difficult to derive a non-trivial up-
perbound for Δ2, as it is hard to quantify the maximum value of
q (t, ω) − q (t, ω′) for any t ∈ T and any ω, ω′ ∈ Ω. To explain,
observe that for each tuple t ∈ T , the value of q (t, ω) is decided
by the center closest to t (among all d centers represented by ω).
Assume without loss of generality that, among the centers repre-
sented by ω, the i-th center is closet to t. Suppose that we replace
ω with ω′. In that case, the closet center to t might change from the
i-th center ci to the j-th center cj (i �= j), in which case q (t, ω′)
is decided by the cj instead of ci. Therefore, if we are to derive
the maximum value of q (t, ω) − q (t, ω′), then we must take into
account all possible changes in the center closest to t, which leads
to highly complicated analysis.

Due to the difficulty in upperbouding Δ2, we use only Δ1 to
derive Δ, resulting in Δ ≥ min{Δ1,Δ2} = Δ1. In that case,
EEM is degenerated to the exponential mechanism (EM), since Δ1

is exactly the dampening factor used by the latter. In other words,
our solution for k-means clustering adopts EM instead of EEM.

5.4 Choosing Initial Candidate Set
As discussed in Section 3, the performance of PrivGene can be

improved if the initial candidate set Ω contains at least one reason-
ably good parameter vector. Towards this end, for logistic regres-
sion and SVM classification, we heuristically generate m = 200
parameter vectors in Ω as follows. First, we insert into Ω 180 vec-
tors that are randomly selected from the solution space. After that,
we add another 10 vectors to Ω, such that the first d − 1 elements
in each vector equal 0, while the last element is a random positive
number. We denote this set of 10 vectors as Ω+. Finally, we add
10 vectors (denoted by Ω−) to Ω with a random negative number
in the last dimension, and 0 in all other dimensions.

Essentially, each parameter vector in Ω+ (resp. Ω−) gives a naive
logistic or SVM model that predicts Y = 1 (resp. Y �= 1) for any
given tuple. Although such naive models are not accurate in gen-
eral, they can sometimes serve as a good starting point for Priv-
Gene. To explain, let us consider a dataset D where 70% of the
tuples have the same Y values (regardless of whether they all have
Y = 1 or Y �= 1). Then, at least 10 parameter vectors in Ω provide
a model that can correctly predict the Y value of 70% of the tuples,
resulting in 70% predication accuracy. This, intuitively, gives Priv-
Gene a good initial set of solutions. In general, Ω+ and Ω− tend
to improve the performance of PrivGene for logitic regression and
SVM classification, especially when a large majority of the tuples
in the given dataset have the same values on Y . Note that the gener-
ation of Ω+ and Ω− incur no privacy cost, as they are independent
of the input data.

For k-means clustering, however, there is no obvious way to gen-
erate parameter vectors that correspond to reasonably good solu-
tions. In that case, we resort to populating Ω with 200 vectors
randomly sampled from the solution space.

Table 2: Datasets properties.

Dataset Number of tuples Dimensionality Task

Adult 48, 842 124 Predict if a person makes over 50k USD per year
Banking 45, 211 33 Predict if a client subscribes a term deposit
US 40, 000 58 Predict if a person makes over 25k USD per year
BR 38, 000 53 Predict if a person makes over 300 USD per month
Lifesci 26, 733 10 k-means clustering with k equals 3 and 5
Image 34, 112 3 k-means clustering with k equals 10 and 15

6. EXPERIMENTS
This section experimentally evaluates PrivGene on six real

datasets: (i) Adult [2, 12], which includes information of 48, 842
individuals extracted from the 1994 US Census database, (ii) Bank-
ing [12], a marketing dataset from a banking institution on 45, 211
individuals, (iii) US [1], containing 40, 000 US census records, (iv)
BR [1], consisting of 38, 000 Brazilian census records, (v) Lifesci,
a life sciences dataset, available at http://komarix.org/ac/ds/, (vi)
Image, an image dataset with 34, 112 RGB vectors retrieved from
http://cs.joensuu.fi/sipu/datasets/. Adult, Banking, BR and US
are used for logistic regression and SVM classification; Lifesci and
Image are used in the k-means clustering experiments.

Adult, Banking, US, and BR contain both continuous and cat-
egorical attributes. Following common practice in regression and
classification, we transform each categorical attribute with l possi-
ble values into l binary attributes. We also normalize the values of
each attribute to the range [−1, 1]. After these preprocessing steps,
the dimensionalities of datasets Adult, Banking, US, and BR be-
come 124, 33, 58 and 53, respectively. For k-means clustering, we
choose k = 3, 5 for Lifesci and k = 10, 15 for Image. Table 2
summarizes the properties of each dataset.

As shown in Table 2, in each regression or classification task,
we label a tuple with Y = 1 iff. it belongs to a specific class,
e.g., yearly income over 50k in Adult. In particular, in logistic
regression, we predict a tuple t to be in the Y = 1 class, when-
ever t has over 50% probability to have Y = 1 under the lo-
gistic model. We measure the performance of a logistic model
or an SVM classifier by its misclassification rate, i.e., the frac-
tion of tuples in the testing dataset that are incorrectly classified.
The performance of a k-means clustering method is evaluated by
its average intra-cluster variance (also used in [27]), defined as
1

|D|
∑

t∈D minc∈C ||t − c||22, where D is the testing data and C is
the set of k cluster centers.

We compare PrivGene against six competitors, namely,
GUPT [27], Functional Mechanism (FM) [35], PrivateERM [3],
PrivateSVM [29], NoPrivacy, and Majority. As explained in Sec-
tion 2, GUPT is a generic method that can handle all three model
fitting tasks in our experiments. FM and PrivateSVM are limited
to logistic regression and SVM classification, respectively. Priva-
teERM is limited to specific classes of logistic regression (i.e., with
a non-zero regularization term as explained in Section 2) and SVM
classification (using the Huber loss function rather than the more
popular hinge loss). We include it in our evaluations anyway, with a
very small (10−12) regularization factor in logistic regression, and
Huber loss in SVM classification. The remaining SVM classifica-
tion solutions (i.e., PrivGene, PrivateSVM and NoPrivacy) employ
hinge loss. Note that the effectiveness of PrivateERM is sensitive
to the regularization factor. In our experiments, we use fixed val-
ues of the factor that lead to relatively good performance; using
the auto-tuning algorithm in [3] leads to strictly and significantly

worse results than what we report. These settings are in favor of
PrivateERM.

NoPrivacy directly releases the best parameters without any pri-
vacy consideration. Finally, Majority is a naive differentially pri-
vate classification method: it first counts the number of tuples in
the training data with Y = 1, and then adds Laplace noise to the
count to ensure ε-differential privacy; if the noisy count is larger
than n/2 (n is the number of tuples in the training data), Major-
ity always outputs Y = 1; otherwise, it always outputs Y �= 1.
Clearly, NoPrivacy provides the best possible accuracy for any pri-
vate method, whereas Majority indicates an upper-bound for the
misclassification rate in logistic regression and SVM classification.

Unless specified otherwise, we use the default parameter settings
for each method as in previous work [3,27,29,35]. GUPT requires
an explicitly defined search space for parameter vectors. For regres-
sion and classification, we set the search space to [−5, 5]d, where d
is the number of elements in each parameter vector ω. For k-means
clustering, we naturally set the search space to the domain of a data
tuple. In addition, SVM classification requires a regularization pa-
rameter c. For NoPrivacy, we test a range of c’s and select the best
one. For all other methods, we arbitrarily set C = 10 without
tuning, so as to avoid leaking private information. Finally, in ev-
ery regression/classification experiment, we evaluate each method
by repeating 5-fold cross-validation 500 times, and report the av-
erage result. In each k-means clustering experiment, we run every
method 500 times and report the average result.

6.1 Effect of Number of Iterations
PrivGene has several internal parameters, which are all fixed to

values suggested in the genetic algorithms literature, except for the
number of iterations r. As discussed in Section 3, we adopt a
heuristic r = c · (n ·ε)/m′, where c is a parameter to be tuned, n is
the number of tuples in the input data, and m′ = 1 (resp. m′ = 10)
when EEM (resp. EM) is incorporated with PrivGene. To choose an
appropriate value for c, we conduct experiments as follows. First,
we run PrivGene+EEM for logistic regression and SVM classifica-
tion on Adult and Banking, based on which we select a fixed value
for c, without looking at the other datasets or the task of k-means
clustering. After that, we use the selected c for all experiments.
This ensures (i) that our choice of c does not reveal private infor-
mation on datasets US and BR, and (ii) that PrivGene can compete
against other methods without relying on manual tuning of param-
eters. Meanwhile, since our parameter tuning is performed based
on Adult and Banking, the experimental results on the other four
datasets are more important.

Figure 2 illustrates the misclassification rate of PrivGene with
varying values of c, as a ratio of the misclassification rate when
c = 0.5 × 10−3. Observe that the misclassification rate of Priv-
Gene tends to be high when c is either excessively small or exces-
sively large. This is consistent with our analysis in Section 3 that
(i) a small c prevents PrivGene from converging to the optimal so-

Adult, Logistic Adult, SVM Banking, Logistic Banking, SVM

90%
92%
94%
96%
98%

100%

 0.5 0.75 1 1.25 1.5 1.75 2 2.25
c (× 10-3)

error ratio

90%

92%

94%

96%

98%

100%

 0.5 0.75 1 1.25 1.5 1.75 2 2.25
c (× 10-3)

error ratio

95%
96%
97%
98%
99%

100%
101%
102%

 0.5 0.75 1 1.25 1.5 1.75 2 2.25
c (× 10-3)

error ratio

95%
96%
97%
98%
99%

100%
101%
102%

 0.5 0.75 1 1.25 1.5 1.75 2 2.25
c (× 10-3)

error ratio

(a) n · ε/m′ = 16000 (b) n · ε/m′ = 20000 (c) n · ε/m′ = 24000 (d) n · ε/m′ = 28000

Figure 2: Number of iterations in Logistic regression and SVM classification.

PrivGene GUPT FM PrivateERMMajorityNoPrivacy

10%

20%

30%

40%

50%

 0.05 0.2 0.4 0.6 0.8 1
privacy budget ε

misclassification rate

0%

10%

20%

30%

40%

50%

 0.05 0.2 0.4 0.6 0.8 1
privacy budget ε

misclassification rate

20%
25%
30%
35%
40%
45%
50%
55%

 0.05 0.2 0.4 0.6 0.8 1
privacy budget ε

misclassification rate

20%
25%
30%
35%
40%
45%
50%
55%

 0.05 0.2 0.4 0.6 0.8 1
privacy budget ε

misclassification rate

(a) Adult (b) Banking (c) US (d) BR

Figure 3: Logistic regression on different datasets.

lutions, and (ii) a large c renders it difficult for PrivGene to choose
the top-quality offsprings in each iteration, both of which lead to
inferior overall performance. Based the experimental results, we
set c = 1.25 × 10−3 (the dotted vertical line in Figure 2), and use
this value in all remaining experiments.

6.2 Comparisons with Existing Solutions
This section compares PrivGene with existing solutions on three

model fitting tasks: logistic regression, SVM classification, and k-
means clustering. Note that previous work [27] evaluates GUPT on
exactly the same three tasks.

Logistic Regression. Figure 3 shows the misclassfication rate of
each algorithm, with varying privacy budget ε. The error of No-
Privacy remains unchanged for all values of ε since it does not
enforce ε-differential privacy at all. Clearly, both PrivGene and
PrivateERM outperform FM and GUPT in all settings. Compar-
ing PrivGene and PrivateERM, the former achieves consistently
better accuracy than the latter, except when the privacy budget ε
becomes extremely small (i.e., 0.05), in which case both methods
obtain comparable (and relatively low) accuracy. For reasonably
large ε, both PrivGene and PrivateERM achieve accuracy close to
NoPrivacy. This result reassures that differential privacy is indeed
a practical technique for model fitting on sensitive data, provided
that an appropriate solution is used for the task.

Regarding Majority, its accuracy is not sensitive to the value of
ε, because (i) there are large gaps between the number of records
in the majority and minority classes on the Adult and Banking
datasets, and (ii) the two classes have similar number of records
on US and BR; consequently, Majority’s accuracy is close to that
of a wild guess (i.e., 50%). PrivGene outperforms Majority, except
when ε is very small (i.e., < 0.01), or when there is a dominating
majority class (e.g., on Banking, since few people subscribe to a

term deposit), where the Majority’s accuracy is already close to that
of NoPrivacy, leaving little space for improvement.

SVM Classification. This set of experiments compares PrivGene
with existing methods on SVM classification. Figure 4 illustrates
the average misclassification rate of SVM classifiers trained by dif-
ferent algorithms. For all 4 datasets, PrivGene and PrivateERM are
highly competitive, whereas GUPT and PrivateSVM report close-
to-random class labels. Meanwhile, the accuracy of the former two
is again close to that of NoPrivacy in all settings, and higher than
Majority in most cases, which confirms their practical usefulness.
PrivGene slightly outperforms PrivateERM on Adult and US, and
the reverse is true on BR. This is because PrivGene’s accuracy is
slight better on Adult and US than on BR, which is also evident
in the set of logistic regression experiments. The reason is that the
parameter c is tuned based on Adult and Banking is sub-optimal
on BR. Nevertheless, the accuracy loss due to this sub-optimal c
is small. Concerning Banking, the difference in accuracy of Priv-
Gene, Majority and PrivateERM is negligible, due to the presence
of a dominating majority class.

k-means Clustering. Figure 5 exhibits the average intra-cluster
variance of each algorithm. Note that the accuracy results for Im-
age are shown in log scale. PrivGene is again the clear winner in
all settings, and the performance gap between PrivGene and GUPT
increases rapidly with decreasing ε. At ε = 0.1, the accuracy of
PrivGene is two orders of magnitude better than that of GUPT. Both
PrivGene and GUPT are more sensitive to ε compared to logistic
regression and SVM classification tasks, which suggests that dif-
ferentially private k-means clustering is a more difficult problem.

In summary, PrivGene outperforms both the general solution
GUPT and specialized solutions FM (for logistic regression) and
PrivateSVM (for SVM classification). The only method that can

PrivGene GUPT FM PrivateERMMajorityNoPrivacy

10%

20%

30%

40%

50%

 0.05 0.2 0.4 0.6 0.8 1
privacy budget ε

misclassification rate

0%

10%

20%

30%

40%

50%

60%

 0.05 0.2 0.4 0.6 0.8 1
privacy budget ε

misclassification rate

20%
25%
30%
35%
40%
45%
50%
55%

 0.05 0.2 0.4 0.6 0.8 1
privacy budget ε

misclassification rate

20%
25%
30%
35%
40%
45%
50%
55%

 0.05 0.2 0.4 0.6 0.8 1
privacy budget ε

misclassification rate

(a) Adult (b) Banking (c) US (d) BR

Figure 4: SVM classification on different datasets.

PrivGene GUPTNoPrivacy

 10

 100

 1000

 0.05 0.2 0.4 0.6 0.8 1
privacy budget ε

intra-cluster variance

 10

 100

 1000

 0.05 0.2 0.4 0.6 0.8 1
privacy budget ε

intra-cluster variance

 100

 1000

 10000

 0.05 0.2 0.4 0.6 0.8 1
privacy budget ε

intra-cluster variance

 100

 1000

 10000

 0.05 0.2 0.4 0.6 0.8 1
privacy budget ε

intra-cluster variance

(a) Lifesci, k = 3 (b) Lifesci, k = 5 (c) Image, k = 10 (d) Image, k = 15

Figure 5: k-means clustering on different datasets.

EEM EM

20%

25%

30%

35%

40%

45%

 1 10 20 30 40
number of iterations

misclassification rate

20%

25%

30%

35%

40%

45%

 1 10 20 30 40
number of iterations

misclassification rate

(a) Logistic regression (b) SVM classification

Figure 6: Improvement of EEM on the US dataset

compete with PrivGene is PrivateERM, which, however, relies on
rather strong assumptions of the model fitting task as well as a good
selection of the regularization factor. The accuracy of PrivGene is
often close to that of NoPrivacy, and is generally robust against data
dimensionality and (to a lesser degree) the amount of privacy bud-
get ε. These results suggest that PrivGene is the method of choice
for all three model fitting tasks.

6.3 Improvement of EEM
Having established the superiority of PrivGene over existing so-

lutions, we next investigate the intrinsic characteristics of Priv-
Gene. In particular, we demonstrate the effectiveness of using EEM
in comparison with vanilla exponential mechanism. Figure 6a and
6b illustrate the performance of the exponential mechanism (with
m′ = 1 in order to facilitate the comparison) and EEM in terms of
misclassification rate in the tasks of logistic regression and SVM

EEM EM

20%

25%

30%

35%

40%

45%

 1 10 20 30 38
number of iterations

misclassification rate

20%

25%

30%

35%

40%

45%

 1 10 20 30 38
number of iterations

misclassification rate

(a) Logistic regression (b) SVM classification

Figure 7: Improvement of EEM on the BR dataset

classification, respectively, using the US dataset with ε fixed to
its maximal value 1. Using a different value for ε leads to simi-
lar conclusions. There is a gap between the misclassification rate
of PrivGene with EEM and with exponential mechanism, and the
gap increases rapidly with the number of iterations. When Priv-
Gene finishes all iterations, EEM wins by over 10% in terms of
misclassification rate for logistic regression, and 7% for SVM clas-
sification.

Figure 7 demonstrates the results from the BR dataset with same
settings as US. Again, EEM is highly effective for PrivGene com-
pared to the original exponential mechanism. In particular, the use
of EEM reduces the misclassification rate by up to 8% for logistic
regression, and up to 6% for SVM classification. Considering that
the accuracy of PrivGene is already close to that of NoPrivacy, im-
provement in PrivGene’s misclassification rate is difficult; hence,
the use of EEM is strongly recommended.

7. CONCLUSIONS AND FUTURE WORK
This paper presents PrivGene, a general framework for differen-

tially private model fitting. Unlike most existing solutions that ap-
ply the differentially private version of a popular algorithm in the
non-private setting to a restricted class of problems, PrivGene is
based on the happy marriage of differential privacy with genetic al-
gorithms, which achieves high accuracy for a broad class of model
fitting problems. In addition, we propose EEM, an improved ver-
sion of the exponential mechanism for PrivGene. We show that
PrivGene outperforms existing solutions on three common model
fitting tasks: logistic regression, SVM classification, and k-means
clustering, and the accuracy of PrivGene is often close to the base-
line approach without privacy considerations. Regarding future
work, we plan to investigate the possibility of applying PrivGene
to problems besides model fitting, e.g., dimensionality reduction
and frequent pattern mining. Additionally, we are also interested in
generalizing EEM to improve the accuracy of other differentially
private algorithms.

Acknowledgement
This work was supported by the Nanyang Technological University
under SUG Grant M58020016, and by A*STAR under SERC Grant
102-158-0074. The authors would like to thank the anonymous
reviewers for their insightful comments.

8. REFERENCES
[1] https://international.ipums.org.
[2] C.-C. Chang and C.-J. Lin. Libsvm: A library for support

vector machines. page 27, 2011.
[3] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate.

Differentially private empirical risk minimization. Journal of
Machine Learning Research, 12:1069–1109, 2011.

[4] G. Cormode, C. M. Procopiuc, E. Shen, D. Srivastava, and
T. Yu. Differentially private spatial decompositions. In
ICDE, 2012.

[5] C. Cortes and V. Vapnik. Support-vector networks. Mach.
Learn., 20(3):273–297, Sept. 1995.

[6] L. Davis. Adapting operator probabilities in genetic
algorithms. In Proceedings of the third international
conference on Genetic algorithms, pages 61–69, San
Francisco, CA, USA, 1989. Morgan Kaufmann Publishers
Inc.

[7] L. Davis. Handbook of Genetic Algorithms. Van Nostrand
Reinhold, New York, New York, USA, 1991.

[8] B. Ding, M. Winslett, J. Han, and Z. Li. Differentially private
data cubes: optimizing noise sources and consistency. In
SIGMOD, pages 217–228, 2011.

[9] C. Dwork. Differential privacy. In ICALP, pages 1–12, 2006.
[10] C. Dwork, F. McSherry, K. Nissim, and A. Smith.

Calibrating noise to sensitivity in private data analysis. In
TCC, pages 265–284, 2006.

[11] P. Elliot, J. C. Wakefield, N. G. Best, and D. J. Briggs.
Spatial Epidemiology; Methods and applications. Oxford
University Press, 2000.

[12] A. Frank and A. Asuncion. UCI machine learning repository,
2010.

[13] A. Friedman and A. Schuster. Data mining with differential
privacy. In KDD, pages 493–502, 2010.

[14] D. E. Goldberg. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.

[15] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the
accuracy of differentially private histograms through
consistency. PVLDB, 3(1):1021–1032, 2010.

[16] J. H. Holland. Adaptation in Natural and Artificial Systems:
An Introductory Analysis with Applications to Biology,
Control and Artificial Intelligence. MIT Press, Cambridge,
MA, USA, 1992.

[17] D. Hosmer and S. Lemeshow. Applied Logistic Regression.
Wiley Series in Probability and Statistics: Texts and
References Section. Wiley, 2000.

[18] A. Inan, M. Kantarcioglu, G. Ghinita, and E. Bertino. Private
record matching using differential privacy. In EDBT, pages
123–134, 2010.

[19] D. Kifer and A. Machanavajjhala. No free lunch in data
privacy. In SIGMOD, pages 193–204, 2011.

[20] D. Kifer and A. Machanavajjhala. A rigorous and
customizable framework for privacy. In PODS, 2012.

[21] D. Kifer, A. D. Smith, and A. Thakurta. Private convex
optimization for empirical risk minimization with
applications to high-dimensional regression. Journal of
Machine Learning Research - Proceedings Track,
23:25.1–25.40, 2012.

[22] B. R. Kirkwood. Essentials of medical statistics. Blackwell
Scientific Publications, 1988.

[23] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor.
Optimizing linear counting queries under differential privacy.
In PODS, pages 123–134, 2010.

[24] N. Li, W. Qardaji, D. Su, and J. Cao. Privbasis: Frequent
itemset mining with differential privacy. PVLDB,
5(11):1340–1351, 2012.

[25] S. Lloyd. Least squares quantization in pcm. IEEE Trans. Inf.
Theor., 28(2):129–137, Sept. 2006.

[26] F. McSherry and K. Talwar. Mechanism design via
differential privacy. In FOCS, pages 94–103, 2007.

[27] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler. Gupt:
privacy preserving data analysis made easy. In SIGMOD,
pages 349–360, 2012.

[28] M. S. Pepe. The Statistical Evaluation of Medical Tests for
Classification and Prediction. Oxford Statistical Science
Series. Oxford University Press, 2004.

[29] B. I. P. Rubinstein, P. L. Bartlett, L. Huang, and N. Taft.
Learning in a large function space: Privacy-preserving
mechanisms for svm learning. Journal of Privacy and
Confidentiality, 4(1):65–100, 2012.

[30] J. D. Schaffer, R. A. Caruana, L. J. Eshelman, and R. Das. A
study of control parameters affecting online performance of
genetic algorithms for function optimization. In Proceedings
of the third international conference on Genetic algorithms,
pages 51–60. Morgan Kaufmann Publishers Inc., 1989.

[31] A. Smith. Privacy-preserving statistical estimation with
optimal convergence rate. In STOC, 2011.

[32] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via
wavelet transforms. In ICDE, pages 225–236, 2010.

[33] J. Xu, Z. Zhang, X. Xiao, Y. Yang, and G. Yu. Differentially
private histogram publication. In ICDE, 2012.

[34] G. Yuan, Z. Zhang, M. Winslett, X. Xiao, Y. Yang, and
Z. Hao. Low-rank mechanism: Optimizing batch queries
under differential privacy. PVLDB, 5(11):1352–1363, 2012.

[35] J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett.
Functional mechanism: Regression analysis under
differential privacy. PVLDB, 5(11):1364–1375, 2012.

