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ABSTRACT
Differential privacy is a promising privacy-preserving paradigm for
statistical query processing over sensitive data. It worksby inject-
ing random noise into each query result, such that it is provably
hard for the adversary to infer the presence or absence of anyindi-
vidual record from the published noisy results. The main objective
in differentially private query processing is to maximize the accu-
racy of the query results, while satisfying the privacy guarantees.
Previous work, notably [16], has suggested that with an appropri-
ate strategy, processing a batch of correlated queries as a whole
achieves considerably higher accuracy than answering themindi-
vidually. However, to our knowledge there is currently no practical
solution to find such a strategy for an arbitrary query batch;ex-
isting methods either return strategies of poor quality (often worse
than naive methods) or require prohibitively expensive computa-
tions for even moderately large domains. Motivated by this,we
propose theLow-Rank Mechanism(LRM), the first practical dif-
ferentially private technique for answering batch querieswith high
accuracy, based on alow rank approximationof the workload ma-
trix. We prove that the accuracy provided by LRM is close to the
theoretical lower bound for any mechanism to answer a batch of
queries under differential privacy. Extensive experiments using real
data demonstrate that LRM consistently outperforms state-of-the-
art query processing solutions under differential privacy, by large
margins.

1. INTRODUCTION
Differential privacy [11] is an emerging paradigm for publishing

statistical information over sensitive data, with strong and rigorous
guarantees on individuals’ privacy. Since its proposal, differential
privacy has attracted extensive research efforts, such as cryptogra-
phy [11], algorithms [12, 14, 21], databases [8, 15, 16, 24, 27, 28,
29], data mining [1, 13] and machine learning [3, 4, 25]. The main
idea of differential privacy is to inject random noise into aggre-
gate query results, such that the adversary cannot infer, with high

confidence, the presence or absence of any given recordr in the
dataset, even if the adversary knows all other records in thedataset
except forr. This paper follows a popular definition of differen-
tial privacy, calledǫ-differential privacy, in which the adversary’s
maximum confidence in inferring private information is controlled
by a user-specified parameterǫ called theprivacy budget. Givenǫ,
the main goal of query processing underǫ-differential privacy is to
maximize the utility/accuracy of the (noisy) query answers, while
satisfying the above privacy requirements.

This work focuses on a common class of queries calledlinear
counting queries, which is the basic operation in many statistical
analyses. Similar ideas apply to other types of linear queries, e.g.,
linear sums. Figure 1(a) illustrates an example electronicmedical
record database, where each record corresponds to an individual.
Figure 1(b) shows the exact number of HIV+ patients in each state,
which we refer to asunit counts. A linear counting query in this
example can be any linear combination of the unit counts. Forin-
stance, letxNY , xNJ , xCA, xWA be the patient counts in states
NY, NJ, CA, and WA respectively; one possible linear counting
query isxNY + xNJ + xCA + xWA, which computes the total
number of HIV+ patients in the four states listed in our example.
Another example linear counting query isxNY /19 + xNJ/8 +
xCA/37, which calculates the weighted average of patient counts
in states NY, NJ and CA, with weights set according to their re-
spective population sizes. In general, we are given a database with
n unit counts, and a batchQS of m linear counting queries. The
goal is to answer all queries inQS underǫ-differential privacy, and
maximize the expected overall accuracy of the queries.

Name State HIV+

Alice NY Yes

Bob NJ Yes

Carol NY Yes

Dave CA Yes

...

State # of HIV+ patients

NY 82,700

NJ 19,000

CA 67,000

WA 5,900

...

(a) Patient records (b) Statistics on HIV+ patients

Figure 1: Example medical record database

Straightforward approaches to answering a batch of linear count-
ing queries usually lead to sub-optimal result accuracy. One naı̈ve
solution, referred to asnoise on queries(NOQ), is to process each
query independently, e.g., using the Laplace Mechanism [11]. This
method fails to exploit thecorrelationsbetween different queries.
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Consider a batch of three different queriesq1 = xNY + xNJ +
xCA + xWA, q2 = xNY + xNJ , q3 = xCA + xWA. Clearly, the
three queries are correlated sinceq1 = q2+q3. Thus, an alternative
strategy for answering these queries is to process onlyq2 andq3,
and use their sum to answerq1. As will be explained in Section 3,
the amount of noise added to query results depends upon thesen-
sitivity of the query set, which is defined as the maximum possible
total change in query results caused by adding or removing a sin-
gle record in the original database. In our example, the sensitivity
of the query set{q2, q3} is 1, because adding/removing a patient
record in Figure 1a affects at most one ofq2 andq3 (i.e., q2 if the
record is associated with state NY or NJ, andq3 if the state is CA or
WA), by exactly 1. On the other hand, the query set{q1, q2, q3} has
a sensitivity of2, since a record in the above 4 states affects both
q1 and one ofq2 and q3. According to the Laplace mechanism,
the variance of the added noise to each query is2∆2/ǫ2, where∆
is the sensitivity of the query set, andǫ is the user-specified pri-
vacy budget. Therefore, processing{q1, q2, q3} directly incurs a
noise variance of8/ǫ2 for each query; on the other hand, executing
{q2, q3} leads to noise variance of2/ǫ2 for each ofq2 andq3, and
their sumq1 = q2 + q3 has a noise variance of2 × 2/ǫ2 = 4/ǫ2.
Clearly, the latter method obtains higher accuracy for all queries.

Another simple solution, referred to asnoise on data(NOD), is
to process each unit count under differential privacy, and combine
them to answer the given linear counting queries. Continuing the
example, this method computes the noisy counts forxNY , xNJ ,
xCA andxWA, and uses their linear combinations to answerq1, q2,
andq3. This approach overlooks the correlations between different
unit counts. In our example,xNY andxNJ (and similarly,xCA and
xWA) are either both present or both absent in every query, and,
thus, can be seen as a single entity. Processing them as indepen-
dent queries incurs unnecessary accuracy costs when re-combining
them. In the example, NOD adds noise with variance2/ǫ2 to each
unit count, and their combinations to answerq1, q2, andq3 have
noise variance8/ǫ2, 4/ǫ2 and4/ǫ2 respectively. NOD’s result util-
ity is also worse than the above-mentioned strategy of processing
q2 andq3, and adding their results to answerq1.

In general, the query setQS may exhibit complex correlations
among different queries and among different unit counts. Asa
consequence, it is non-trivial to obtain the best strategy to answer
QS under differential privacy. For instance, consider the following
query set:

q1 = 2xNJ + xCA + xWA

q2 = xNJ + 2xWA

q3 = xNY + 2xCA + 2xWA

NOQ is clearly a poor choice, since it incurs a sensitivity of5
(e.g., a record of state WA affectsq1 by 1, andq2 and q3 by 2
each). The sensitivity of NOD remains 1, and it answersq1, q2,
andq3 with noise variance12/ǫ2, 10/ǫ2 and18/ǫ2 respectively,
leading to a sum-square error (SSE) of40/ǫ2. The optimal strategy
in terms of SSE in this case computes the noisy results ofxNJ and
xWA, as well asq′1 = xNY /3 + xCA, andq′2 = 2xNY /3. Then,
it obtains the results forq1, q2, andq3 as follows.

q1 = q′1 + 2xNJ + xWA − q′2/2

q2 = xNJ + 2xWA

q3 = 2q′1 + 2xWA + q′2/2

The sensitivity of the above method is also 1, and it answers
q1, q2, andq3 with noise variance12.5/ǫ2, 10/ǫ2 and 16.5/ǫ2 re-
spectively, resulting an SSE of 39/ǫ2. Observe that the there is no
simple pattern in the query set or the optimal strategy. Since there

is an infinite space of possible strategies, searching for the best one
is a challenging problem.

Li et al. [16] first formalize the above observations (i.e., answer-
ing a correlated query set with an effective strategy) into thematrix
mechanism. However, applying the matrix mechanism in practice
remains hard, because there is currently no effective solution to
find a good strategy for an arbitrary query set. The only known
strategy-searching methods described in [16] are either inefficient
(which incur prohibitively high computational costs for even mod-
erately large domains), or ineffective (which rarely obtain strate-
gies that outperform naive methods NOD/NOQ). Motivated by this,
we propose the first practical realization of the matrix mechanism,
called thelow-rank mechanism(LRM), based on the theory of low-
rank matrix approximation. We prove that the accuracy provided
by LRM is within a constant factor of the theoretical lower bound
established in [14]. Extensive experiments demonstrate that LRM
significantly outperforms existing solutions in terms of result accu-
racy, sometimes by orders of magnitude.

The rest of the paper is organized as follows. Section 2 reviews
previous studies on differential privacy. Section 3 provides formal
definitions for our problem. Section 4 presents the mechanism for-
mulation of LRM, and analyzes its optimality. Section 5 discusses
how to solve the optimization problem in LRM. Section 6 verifies
the superiority of our proposal through an extensive experimental
study. Finally, Section 7 concludes the paper.

2. RELATED WORK
Section 2.1 surveys general purpose mechanisms for enforcing

differential privacy. Section 2.2 presents our main competitor, the
matrix mechanism [16].

2.1 Differential Privacy Mechanisms
Differential privacy was first formally presented in [11], though

some previous studies have informally used similar models,e.g.,
[9]. The Laplace mechanism [11] is the first generic mechanism
for enforcing differential privacy, which works when the output do-
main is a multi-dimensional Euclidean space. McSherry and Tal-
war [21] propose the exponential mechanism, which applies to any
problem with a measurable output space. The generality of the ex-
ponential mechanism makes it an important tool in the designof
many other differentially private algorithms, e.g., [6, 29, 21].

Linear query processing is of particular interest in both the the-
ory and database communities, due to its wide range of applica-
tions. To minimize the error of linear queries under differential
privacy requirements, several methods try to build a synopsis of the
original database, such as Fourier transformations [24], wavelets
[28] and hierarchical trees [15]. By publishing a noisy synopsis
underǫ-differential privacy, these methods are capable of answer-
ing an arbitrary number of linear queries. However, most of these
methods obtain good accuracy only when the query selection crite-
rion is a continuous range; meanwhile, since these methods are not
workload-aware, their performance for a specific workload tends to
be sub-optimal.

The compressive mechanism [17] reduces the amount of noise
necessary to satisfy differential privacy, by utilizing the sparsity of
the dataset under certain transformations. The main idea isto use
a technique called compressive sensing to compress a sparserepre-
sentation of the data into a compact synopsis, and inject noise into
the much smaller synopsis instead of the original data. After that,
the method reconstructs the original data by applying the decod-
ing algorithm of compressive sensing to the noisy synopsis.The
result provides significantly higher utility, while satisfying differ-
ential privacy requirements.



Several theoretical studies have derived lower bounds for the
noise level for processing linear queries under differential privacy.
Notably, Dinur and Nissim [9] prove that any perturbation mecha-
nism with maximal noise of scaleO(n) cannot possibly preserve
personal privacy, if the adversary is allowed to ask all possible lin-
ear queries, and has exponential computation capacity. By reducing
the computation capacity of the adversary to polynomial-bounded
Turing machines, they show that an error scaleΩ(

√
n) is necessary

to protect any individual’ privacy.
More recently, Hardt and Talwar [14] have significantly tight-

ened the error lower bound for answering a batch of linear queries
under differential privacy. Given a batch ofm linear queries, they
prove that anyǫ-differential privacy mechanism leads to squared
error of at leastΩ(ǫ−2m3V ol(W )), whereV ol(W ) is the volume
of the convex body obtained by transforming theL1-unit ball into
m-dimensional space using the linear transformations in thework-
loadW . They also propose a mechanism for differential privacy
whose error level almost reaches this lower bound. However,their
mechanism relies on uniform sampling in a high-dimensionalcon-
vex body, which, although it theoretically takes polynomial time,
is too expensive to be of practical use. This paper extends their
analysis to low-rank workload matrices.

Besides linear queries, differential privacy is also applicable to
more complex queries in various research areas, due to its strong
privacy guarantee. In the field of data mining, Friedman and Schus-
ter [13] propose the first algorithm for building a decision tree un-
der differential privacy. Mohammed et al. [22] study the same
problem, and propose an improved solution based on a general-
ization strategy coupled with the exponential mechanism. Ding et
al. [8] investigate the problem of differentially private data cube
publication. They present a randomized materialized view selec-
tion algorithm, which reduces the overall error, and preserves data
consistency.

In the database literature, a plethora of methods have been pro-
posed to optimize the accuracy of differentially private query pro-
cessing. Cormode et al. [6] investigate the problem of multi-
dimensional indexing under differential privacy, with thenovel idea
of assigning different amounts of privacy budget to different levels
of the index. Xu et al. [29] optimize the procedure of building a
differentially private histogram, with an interesting combination of
a dynamic programming algorithm for optimal histogram compu-
tation and the exponential mechanism.

Differential privacy is also becoming a hot topic in the machine
learning community, especially for learning tasks involving sen-
sitive information, e.g., medical records. In [4], Chaudhuri et al.
propose a generic differentially private learning algorithm, which
requires strong convexity of the objective function. Rubinstein et
al. [25] study the problem of SVM learning on sensitive data,and
propose an algorithm to perturb the kernel matrix with performance
guarantees, when the loss function satisfies thel-Lipschitz continu-
ity property. General differential privacy techniques have also been
applied to real systems, such as network trace analysis [19]and
private recommender systems [20].

2.2 Matrix Mechanism
Li et al. [16] propose the matrix mechanism, which formalizes

the intuition that a batch of correlated linear queries can be an-
swered more accurately under differential privacy, by processing
a different set of queries (called thestrategy) and combining their
results. Specifically, given a workload of linear queries, the ma-
trix mechanism first constructs aworkload matrixW of sizem×n,
wherem is the number of queries, andn is the number of unit
counts. The construction of the workload matrix is elaborated fur-

ther in Section 3. After that, the mechanism searches for astrategy
matrixA of sizer×n, wherer is a positive integer. Intuitively,A
corresponds to another set of linear queries, such that every query
in W can be expressed as a linear combination of the queries inA.
The matrix mechanism then answers the queries inA under differ-
ential privacy, and subsequently uses their noisy results to answer
queries inW .

The main challenge for applying the matrix mechanism to prac-
tical workloads is to identify an appropriate strategy matrix A. Ref.
[16] provides two algorithms for this purpose. The first, based on
iteratively solving a pair of related semidefinite programs, incurs
O(m3n3) computational overhead, which is prohibitively expen-
sive even for moderately large values ofm andn. The second
solution computes anL2 approximation of the optimal strategy
matrix A. This method, though faster than the first one, still in-
curs high costs as we show in the experiments. Further, theL2

approximation of the optimal strategy matrix often has poorqual-
ity. In fact, throughout our experimental evaluations, we have never
found a single setting where this method obtains lower overall er-
ror than the naive solution NOD that injects noise directly into the
unit counts. Although the matrix mechanism makes a significant
theoretical contribution, so far its practice use is limited due to the
lack of an effective implementation.

3. PRELIMINARIES
In this paper, we assume there aren records in a databaseD, i.e.,

D = {x1, x2, . . . , xn}. Eachxi in D is a real number. To facilitate
matrix manipulations, in the rest of the paper we use a vectorof size
n× 1 to denote the database, i.e.{x1, x2, . . . , xn}T . In Figure 1,
for example, each record contains the number of HIV+ patients in
a state of the USA. A query setQ of cardinalitym is a mapping
from the database domain to real numbers, i.e.,Q : D 7→ Rm.

3.1 Differential Privacy
A query processing mechanismM is a randomized mapping

from D × Q to Rm. Given an arbitrary query setQ ∈ Q and a
databaseD ∈ D, the mechanismM returns a distribution on the
query output domainRm. Two databasesD1 andD2 are neigh-
bor databasesiff they differ on exactly one record, i.e.,D1 =
{x1, x2, . . . , xi, . . . , xn} andD2 = {x1, x2, . . . , x

′
i, . . . , xn}. A

randomized mechanismM satisfiesǫ-differential privacy if for ev-
ery pair of neighbor databasesD1 andD2, we have

∀Q∀R : Pr(M(Q,D1) = R) ≤ eǫ Pr(M(Q,D2) = R) (1)

The above inequality implies that the mechanismM always re-
turns similar results on neighbor databases. This limits the adver-
sary’s confidence in inferring any record from the output ofM ,
even when he or she knows all remaining records in the database.

In [11], Dwork et al. presented a general protocol to implement
ǫ-differential privacy, utilizing the concept ofsensitivity. Given a
query setQ ∈ Q, the sensitivity∆ is the maximalL1 distance
between the exact query results on any neighbor databasesD1 and
D2, i.e.

∆ = max
D1,D2

‖Q(D1), Q(D2)‖1 (2)

We emphasize that∆ only depends on the data domainD and
the query setQ, not the actual data. Therefore, we simply assume
such a constant∆ is public knowledge to everyone, including the
adversary. TheLaplace Mechanism[11], ML, outputs a random-
ized resultR on databaseD, following a Laplace distribution with
meanQ(D) and magnitude∆

ǫ
, i.e.,

Pr(ML(Q,D) = R) ∝ exp
( ǫ

∆
‖R −Q(D)‖1

)

(3)



This is equivalent to addingm-dimensional independent Laplace
noise, asQ(D) + Lap

(

∆
ǫ

)m
, in which Lap

(

∆
ǫ

)

is a random
variable following a zero-mean Laplace distribution with scale ∆

ǫ
.

Based on the definition of the Laplace mechanism, the expected
squared error of the randomized query answer is2m∆2

ǫ2
, since the

variance ofLap(s) is 2s2 for any scales. Note that the amount of
error only depends on the sensitivity of the queries, regardless of
the records in databaseD.

3.2 Batch Linear Queries
As mentioned in the introduction, we focus on non-interactive

linear queries in this paper. A linear queryq(D) is in the form of
a linear function over the records in the database. Given a weight
vector{w1, w2, . . . , wn}T of sizen, the linear query returns the
dot product between the weight vector and database vector, i.e.,

q(D) = w1x1 +w2x2 + . . .+wnxn

We assume a batch ofm linear queries,Q = {q1, q2, . . . , qm},
is submitted to the database at the same time. The query setQ
is thus represented by aworkload matrixW with m rows andn
columns. Each entryWij in W is the j-th coefficient for query
qi on recordxj . Using the vector representation of the database,
i.e. D = (x1, x2, . . . , xn)

T , the query batchQ can be exactly
answered by calculating:

Q(D) = WD =

(

∑

j

W1jxj , . . . ,
∑

j

Wmjxj

)T

Based on the Laplace mechanism, two baseline solutions to en-
forceǫ-differential privacy on a query batch with workloadW are
as follows.
Noise on data: This solution, denoted asMD , adds noise to the
original data. Given databaseD, MD generates a noisy database
D′ using the Laplace mechanism, i.e.,D′ = D + Lap

(

∆
ǫ

)n
. The

query batchQ is then answered by replacingD withD′. The whole
mechanism can be written in the form of manipulation on random
variables, as follows.

MD(Q,D) = WD′ = W

(

D + Lap

(

∆

ǫ

)n)

(4)

Based on the linearity of expectation, it is straightforward to cal-
culate the expected squared error on the output,2∆2

ǫ2

∑

i,j W
2
ij ,

which is proportional to the squared sum of the entries inW .
Noise on results: This baseline solution, denoted asMR, adds
noise to the query results instead of the original data. Since the
queries are linear queries, the sensitivity of the query setis ∆′ =
maxj

∑

i |Wij |∆, i.e., the highest column absolute sum [16]. Thus,
MR outputs the following random results.

MR(Q,D) = WD+ Lap

(

∆′

ǫ

)m

(5)

Similarly, the expected squared error of the mechanism on query
Q is 2m∆′2ǫ−2 = 2mmaxj

∑

i W
2
ij∆

2ǫ−2. By comparing their
expected squared errors, we derive thatMR outperformsMD by
expectation,iff mmaxj

∑

i W
2
ij <

∑

j

∑

i W
2
ij . Whenm ≥ n,

this inequality can never hold, implying thatMR is more effective
only whenm is smaller thann.

3.3 Low Rank Matrices
For any square matrixA = {Aij} of sizen × n, the trace of

the matrix is the sum of the diagonal entries inA, i.e., tr(A) =
∑

i Aii. Given a matrixW = {Wij} of sizem×n, the Frobenius

norm ofW is the square root of the squared sum over all entries,

i.e., ‖W ‖F =
√

∑

ij(Wij)2. Following common notation,W T

denotes the transposed matrix ofW .
Singular value decomposition (SVD) applies to any real-valued

matrix W . Specifically, the result of SVD onW includes three
matrices,U , Σ andV , such thatW = UΣV . Here,U , Σ, and
V are of sizem × s, s × s, ands × n respectively, wherem and
n are the number of rows and columns inW respectively, ands
is a positive integer no larger thanmin{m,n}. Moreover,U and
V are row-wise and column-wise orthogonal matrices respectively.
Σ is a diagonal matrix, which contains non-negative real numbers
on the diagonal and zeros in all the other entries. These diagonal
entries,{λ1, λ2, . . . , λs}, are called eigenvalues of the matrixW .
The number of non-negative eigenvalues is called the rank ofW ,
denoted asrank(W ).

When the rows and columns in the matrixW are correlated, the
rank of the matrixW can be smaller thanm andn. In such cases,
we say thatW is a low rank matrix. For example, when a group
of records tend to appear together in a query, the workload matrix
W often exhibits strong column correlations. Similarly, when one
query can be expressed as the linear combination of other queries,
W has strong row correlations. Both cases can be exploited to re-
duce the noise level necessary to satisfy differential privacy, as we
showed in Section 1. Next we present the Low Rank Mechanism,
a general solution to enforce differential privacy on a batch of lin-
ear queries, which utilizes the low rank property of the workload
matrix to reduce noise.

4. WORKLOAD DECOMPOSITION
In this section, we propose a general workload matrix decom-

position technique that minimizes the error for a batch of linear
queries. Recall that the example in Figure 1 shows that instead
of adding noise to the original data or query results (i.e., methods
NOD and NOR), it is sometimes possible to construct another lin-
ear basis that leads to higher overall query accuracy. To build such
a basis, we partition the workload matrixW into the product of
two components,B = {Bij} of sizem × r andL = {Ljk} of
sizer × n, such thatW = BL. Note thatr can be larger than the
rank of the workload matrixW . Given the matrix decomposition,
we design general mechanism for adding noise toLD (D is the
dataset), and analyze the expected squared error. We first formally
define the concepts ofquery scaleandquery sensitivity, for a given
decompositionW = BL.

DEFINITION 1. Query Scale
Given a workload decompositionW = BL, the scale of the de-
composition, denoted byΦ(B,L), is the squared sum of the entries
in B, i.e.,Φ(B,L) =

∑

i,j B
2
ij .

DEFINITION 2. Query Sensitivity
Given a workload decompositionW = BL, the sensitivity of the
decomposition, denoted by∆(B,L), is the maximal absolute sum
of any column inL, i.e.,∆(B,L) = maxj

∑

i |Lij |.

SinceW = BL, the linear query batch can be answered by
calculatingQ(D) = WD = BLD. Unlike solutions NOD and
NOR, we inject noise into the intermediate resultLD to enforce
differential privacy. SinceLD is another group of linear queries,
we can apply NOR onQ′(D) = LD with Eq. (5). The sensitivity
of the new linear query batch is∆(B,L), which leads to the fol-
lowing differential privacy mechanismMP (Q,D) with respect to



the workload decompositionW = BL.

MP (Q,D) = B

(

LD + Lap

(

∆(B,L)

ǫ

)r)

(6)

The error analysis ofMP (Q,D) is complicated as its adds noise
at an intermediate step. The following lemma shows that the error
is linear in the query scale, and quadratic in the query sensitivity.

LEMMA 1. The expected squared error ofMP (Q,D) with re-
spect to the decompositionW = BL is2Φ(B,L) (∆(B,L))2 /ǫ2.

Accordingly, we reduce the problem to finding the optimal work-
load decompositionW = BL that minimizesΦ(B,L) (∆(B,L))2.
However, this optimization problem is difficult to solve, since the
objective function is the product ofΦ(B,L) and∆(B,L), and
∆(B,L) may not be derivable. To address this problem, we first
prove an interesting property of the workload decomposition, which
implies that the exact query sensitivity is actually not important.

LEMMA 2. Given a workload decompositionW = BL and a
positive constantα, we can always construct another decomposi-
tionW = B′L′ such thatB′ = αB andL′ = α−1L, satisfying

Φ(B,L) (∆(B,L))2 = Φ(B′, L′)
(

∆(B′, L′)
)2

According to the above lemma, the balance between scale and
sensitivity is not important, as we can always build anotherequiv-
alent workload decomposition with arbitrary sensitivity.This mo-
tivates us to formulate a new optimization program, which focuses
on minimizing the query scale while fixing the query sensitivity.
The following theorem formalizes this claim.

THEOREM 1. Given the workloadW , W = BL is the opti-
mal workload decomposition to minimize expected squared error if
(B,L) is the optimal solution to the following program:

Minimize: tr(BTB)

s.t. W = BL

∀j
∑

i

|Lij | ≤ 1
(7)

In the optimization problem above, we are allowed to specify
the number of columns in the matrixB, i.e. the rankr of the
matrix productBL. This enables us to generate matrices of sig-
nificantly lower rank than the strategy matrix proposed in [16]. We
thus useLow Rank Mechanismto denote the general query process-
ing scheme in Eq. (6), using the optimal decomposition solution to
Formula (7).

4.1 Optimality Analysis
In this subsection, we analyze the optimality of our optimization

formulation. Specifically, we show that the utility of our proposed
mechanism almost reaches the known utility lower bound for linear
queries under differential privacy [14].

LEMMA 3. Given a workload matrixW of rankr with eigen-
values{λ1, . . . , λr}, the expected squared error ofMP (Q,D)
w.r.t. the optimal decompositionW = B∗L∗ in low rank mech-
anism is bounded above by

∑r
k=1 λ

2
kr/ǫ

2.

Using the geometric analysis technique under orthogonal pro-
jection [14], the following lemma reveals a lower bound on the
squared error for linear queries.

LEMMA 4. Given a workload matrixW of rankr with eigen-
values{λ1, . . . , λr}, the expected squared error of anyǫ-differential
privacy mechanism is at least

Ω





(

2r

r!

r
∏

k=1

λk

)2/r

r3/ǫ2





Assume that all the eigenvalues{λ1, λ2, . . . , λr} of workload
W are ordered in non-ascending order. We useC = λ1/λr to
denote the ratio between the largest eigenvalue and the smallest
non-zero eigenvalue. The following theorem discusses the tight-
ness of low rank mechanism on error minimization. In particular, it
proves the optimality of the result decompositionW = B∗L∗ with
respect to Formula (7).

THEOREM 2. Whenr > 5, the mechanismMp(Q,D) using
W = B∗L∗ is anO(C2r)-approximately optimal solution w.r.t.
the set of all non-interactiveǫ-differential privacy mechanisms.

WhenC is close to 1, all non-zero eigenvalues are close to each
other and the mechanism under our decomposition optimization
program outputs results that well approximate the lower bound.
This result answers one of the questions in [14], in which theau-
thors discussed possible orthogonal projections but did not provide
a concrete algorithm to identify the optimal projection. Our formu-
lation can be regarded as an implementation of orthogonal projec-
tion with almost constant approximation. Therefore, our result fills
the gap between theory and practice.

4.2 Relaxation on Decomposition
Theorem 2 shows that our decomposition leads to results with

a tight bound. However, when there are very small eigenvalues in
the workload matrixW , the bound in the theorem becomes loose.
On the other hand, these small eigenvalues contribute little to the
workload matrixW . This observation motivates us to design a new
optimization formulation, in whichBL does not necessarily match
W , but within a small error tolerance. This enables the formulation
to find a more compact decomposition, such that ther used inB
andL can be smaller than the actual rank ofW .

To do this, we introduce a new parameterγ to bound the differ-
ence betweenW andBL in terms of the Frobenius norm. This
leads to a new optimization problem:

Minimize: tr(BTB)

s.t. ‖W −BL‖F ≤ γ

∀j
∑

i

|Lij | ≤ 1
(8)

After finding the optimal(B,L) for the problem in Formula 8,
the mechanismMP (Q,D) outputs query results using Eq. (6).
The error of this new mechanism is also bounded, as stated in the
following theorem.

THEOREM 3. The expected squared error ofMP (Q,D) using
the decomposition(B,L) satisfying Eq. (8) is at most

2tr(BTB)/ǫ2 + γ
∑

i

x2
i

While Theorem 3 implies the possibility of estimating the op-
timal γ, it is not practical to implement it directly, because this
estimation depends on the data, i.e.,

∑

i x
2
i . In our experiments,

we test different values ofγ, and report their relative performance,
regardless of the data distribution.



Algorithm 1 Workload Matrix Decomposition

1: Initializeπ(0) = 0 ∈ Rm×n, β(0) = 1, k = 1
2: while not convergeddo
3: //Approximately solve the subproblem
4: while not convergeddo
5: B(k) ← updateB using Eq. (9)
6: L(k) ← run Algo. 2 to updateL w.r.t. Formula (10)
7: Computeτ = ‖W −B(k)L(k)‖F
8: if τ is sufficiently small orβ is sufficiently largethen
9: returnB(k) andL(k)

10: if k is divisible by 10then
11: β(k+1) = 2β(k)

12: π(k+1) = π(k) + β(k+1)
(

W −B(k)L(k)
)

13: k = k + 1

5. DECOMPOSITION ALGORITHM
The previous section formulates the workload matrix decompo-

sition problem as an optimization program, which is rather compli-
cated and non-trivial to solve. This section describes an effective
and efficient solution for this program, based on the inexactAug-
mented Lagrangian Multiplier (ALM) method [5, 18].

The main challenge in solving the optimization program of For-
mula (8) is the non-smoothL1 regularized term. The projected
gradient method [10] is considered one of the most efficient gen-
eral algorithms to solve these problems. Following the strategy
used in [5], we treat theL1 regularized term separately and ap-
proximately minimize a sequence of Lagrangian subproblems. Our
inexact Augmented Lagrangian method for workload matrix de-
composition problem is summarized in Algorithm 1.

In order to handle the linear constraints‖W −BL‖F ≤ γ → 0,
in which W ∈ Rm×n, B ∈ Rm×r andL ∈ Rr×n, the inexact
Augmented Lagrangian method introduces a positive penaltyitem
β ∈ R and the Lagrange multiplierπ ∈ Rm×n. The update onβ
andπ follows the standard strategy used in [5, 18]. Given fixedβ
andπ in each iteration, the algorithm aims to find a pair of newB
andL to minimize the following subproblem:

J (B,L, β, π) =
1

2
tr(BTB) + 〈π,W −BL〉+ β

2
‖W −BL‖2F

s.t. ∀j
∑

i

|Lij | ≤ 1

This is a Bi-Convex optimization problem, which can be solved
by block gradient descent via alternately optimizingB andL. Based
on the formulation above, optimizingB is straightforward. Since
the gradient with respect toB can be computed as:

∂J
∂B

= B − πLT + βBLLT − βWLT

,
based on the fact thatJ (·) is convex with respect toB, we can set
∂J
∂B

= 0, and obtain a closed form solution to updateB:

B =
(

βWLT + πLT
)(

βLLT + I
)−1

(9)

The second step is to optimizeL, which is equivalent to solving
the following quadratic programming problem:

G(L) = β

2
tr
(

LTBTBL
)

− tr
(

(βW + π)T BL
)

s.t. ∀j
∑

i

|Lij | ≤ 1
(10)

Algorithm 2 Nesterov’s Projection Gradient Method

1: input:G(L), ∂G
∂L

, L(0)

2: χ = r · n · 10−12, Lipschitz parameter:ω(0) = 1
3: Initializations:L(1) = L(0), δ(−1) = 0, δ(0) = 1, t = 1
4: while not convergeddo
5: α = δ(t−2)−1

δ(t−1) , S = L(t) + α(L(t) − L(t−1))
6: for j = 0 to ...do
7: ω = 2jω(t−1), U = S − 1

ω
∇S

8: ProjectU to the feasible set to obtainL(t) (i.e. solve For-
mula (11))

9: if ‖S − L(t)‖F < χ then
10: return;
11: Define function:Jω,S(U) = G(S) + 〈 ∂G

∂U
, U − S〉 +

ω
2
‖U − S‖2F

12: if G(L(t)) ≤ Jω,S(U) then
13: ω(t) = ω;L(t+1) = L(t); break;

14: Setδ(t) = 1+
√

1+4(δ(t−1))2

2
15: t = t+ 1
16: returnL(t)

In order to minimize Eq. (10) under constraints, we employ Nes-
terov’s first order optimal method [23] to accelerate the gradient
decent. Nesterov’s method has a much faster convergence rate than
traditional methods such as the subgradient method or the naı̈ve
projected gradient descent. In particular, the gradient ofG(L) with
respect toL is

∂G
∂L

= βBTBL− βBTW −BTπ

L is updated by gradient descent while ensuring that theL1 reg-
ularized constraint onL is satisfied. This can be done by solving
the following optimization problem:

min
L
‖L− L(t)‖2F , s.t. ∀j

∑

i

|Lij | ≤ 1, (11)

in whichL(t) denotes the last feasible solution after exactlyk itera-
tions. Since Formula (11) can be decoupled intor independentL1

regularized sub-problems, it can be solved efficiently byL1 pro-
jection methods [10]. The complete algorithm for the projection
method is summarized in Algorithm 2.

Convergence Analysis: In each iteration, the algorithm solves a
sequence of Lagrangian subproblems by optimizingB (step 5) and
L (step 6) alternatingly. The algorithm stops when a sufficiently
smallγ is achieved or the penalty parameterβ is sufficiently large.
It suffices to guarantee thatL converges to the optimal solution
[18]. Although the objective function is non-smooth, the algorithm
possesses excellent convergence properties. To be precise, we for-
mally establish the following convergence statement.

THEOREM 4. If (B(k), L(k)) is the temporary solution after the
k-th iteration and(B∗, L∗) is the optimal solution to Formula (7),
we have

∣

∣

∣tr(B(k)B(k))− tr(B∗B∗)
∣

∣

∣ ≤ O
(

1

βk−1

)

Sinceβ(k) doubles after every 10 iterations, the algorithm con-
verges rapidly. This proves the fast convergence property of our
algorithm.

Complexity Analysis: The total number of variables inB andL
is (m+n)r. Each update onB in Eq. (9) takesO(r2m) time, while
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Figure 2: Effect of varying relaxation parameter γ with the Search Logs dataset for LRM
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Figure 3: Effect of varying r with Search Logs dataset for LRM

each update onL takesO(r2n) time. If Algorithm1 converges to
a local minimum withNin inner iterations (at line 4 in Algorithm
1) andNout outer iterations (at line 2 in Algorithm 1), the total
complexity of Algorithm 1 isO(Nin ×Nout × (r2m+ r2n)).

6. EXPERIMENTS
This section demonstrates the effectiveness of the proposed Low-

Rank Mechanism (LRM), and compares it against four state-of-the-
art methods: the approximate Matrix Mechanism (AMM) that op-
timizes theL2 approximation [16], the Laplace Mechanism (LM)
[11], the Wavelet Mechanism (WM) [28] and the Hierarchical Mech-
anism (HM) [15]. The details of our AMM implementation are
available in Appendix B. All methods were implemented and tested
in Matlab on a desktop PC with Intel quad-core 2.50 GHz CPU
and 4GBytes RAM. In all experiments, every algorithm is exe-
cuted 20 times and the average performance is reported. We em-
ploy three popular real datasets used in [15, 29]:Search Log, Net
Trace and Social Network. Search Logincludes search keyword
statistics collected fromGoogle TrendsandAmerican Onlinebe-
tween 2004 and 2010.Social Networkgives the number of users
in a social network site with specific degrees in the social graph.
Net Traceis a statistical database containing the number of TCP
packets related to particular IP addresses, which is collected from a
university intranet. Search Logs, Net Traceand Social Network
contain216 = 65, 536, 215 = 32, 768 and 11, 342 entries re-
spectively. The reader is referred to [15] for more details of these
datasets. We published our Matlab implementations of all algo-
rithms used in the experiments, as well as sample datasets, online
athttp://yuanganzhao.weebly.com/.

To evaluate the impact of data domain cardinality on real datasets,
we transform the original counts into a vector of fixed sizen (do-
main size), by merging consecutive counts in order. Given the num-
ber m of linear queries in the batch, we generate three different
types of workloads, namelyWDiscrete, WRangeandWRelated. In

γ 0.0001, 0.001, 0.01, 0.1, 1, 10
r {0.8, 1.0, 1.2, 1.4, 1.7, 2.1, 2.5, 3.0, 3.6} × rank(W )
n 128, 256, 512, 1024, 2048, 4096, 8192
m 64, 128, 256, 512, 1024
s {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} ×min(m, n)

Table 1: Parameters used in the experiments

WDiscrete, for each weightWij of queryqi in the batch, we ran-
domly selectWij = 1 with probability 0.02 and setWij = −1
otherwise. InWRange, a batch of range queries on the domain
are generated, by randomly picking up the starting locationa and
ending locationb following a uniform distribution on the domain.
Given the interval(a, b), we setWij of queryqi in the batch to 1
for everya ≤ j ≤ b and all other weights to 0. Finally, forWRe-
lated, we generates (discussed later) independent base queriesA
of sizes × n, by randomly assigning weights to the queries under
a standard(0, 1)-normal distribution. Another group of correlation
matrixC of sizem× s are generated similarly. The final workload
W of sizem× n is the product ofC andA.

We test the impact of five parameters in our experiments:γ, r,
n, m ands. γ is the relaxation factor defined in Formula (8).r is
the number of columns inB (and also the number of rows inL).
n is the size of the domain andm is the number of queries in the
batch. Finally,s is the number of rows of queries in the baseA,
which is only used in the generation ofWRelated. The range of all
these five parameters is summarized in Table 1. Unless otherwise
specified, the default parameters in bold are used. Moreover, we
test three different privacy budgets,ǫ = 1, 0.1 and0.01. Note that
the squared error incurred by all the methods is quadratic in1/ǫ.

In the experiments, we measureAverage Squared ErrorandCom-
putation Timeof the methods. Specifically, theAverage Squared
Error is the average squaredL2 distance between the exact query
answers and the noisy answers. In the following, we first examine
the impact ofγ andr, which are only used in the LRM method.

http://yuanganzhao.weebly.com/
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Figure 4: Effect of varying domain size n on workload ‘WDiscrete’ with ǫ = 0.1
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Figure 5: Effect of domain size n on workload WRange with ǫ = 0.1

The results provide important insights on how to tune these two
parameters to maximize the utility of the LRM method.

6.1 Impact of γ and r on LRM
In LRM, γ is an important parameter controlling the relaxation

on the approximation ofBL to W . In our first set of experiments,
we investigate the impact ofγ on the accuracy and the efficiency of
LRM. Figure 2 reports the performance of LRM under all three dif-
ferent workloads,WDiscrete, WRangeandWRelatedon theSearch
Logdataset with varying values forγ. The results in the figure show
that the errors of LRM on all three workloads are not sensitive to
γ in the range from10−4 to 10. On the other hand, LRM executes
much faster with largerγ. This suggests that a larger value forγ
is preferred in practice, to achieve high efficiency withoutlosing
much on result accuracy. Moreover, we also test with three differ-
ent values of the privacy budgetǫ. Since the decomposition method
does not rely onǫ, the shapes of the result curves with differentǫ
values are nearly identical, albeit at different scales. The average
error is quadratic in the privacy budget1

ǫ
, as expected.

In LRM, r is another important parameter that determines the
rank of the matrixBL that approximates the workloadW . r af-
fects both the approximation accuracy and the optimizationspeed.
Whenr is too small, e.g., whenr < rank(W ), our optimization
formulation may fail to find a good approximation, leading tosub-
optimal accuracy for the query batch. On the other hand, an overly
larger leads to poor efficiency, as the search space expands dramat-
ically. We thus test LRM with varyingr, by controlling the ratio
of r to the actual rankrank(W ), on theSearch Logdataset. We
record the average squared error under all the workloads andreport
it in Figure 3.

There are several important observations in Figure 3. First, when
r < rank(W ), the accuracy of LRM is far worse (up to two orders
of magnitude) than that in other settings. Second, the performance
of LRM is rather stable whenr becomes larger than1.2·rank(W ).

This is because the optimization formulation has enough freedom
to find the optimal decomposition whenr is larger thanrank(W ).
Finally, the amount of computation spent on workload decomposi-
tion increases exponentially withr. Thus, to balance the efficiency
and effectiveness of LRM, a good value forr is betweenrank(W )
and1.2 · rank(W ). We use the latter as the default value in the
subsequent experiments.

6.2 Impact of Varying Domain Size n

We now evaluate the performance of all mechanisms with vary-
ing domain sizen. As mentioned earlier in this section, the domain
size is controlled by merging consecutive counts in the original do-
main. While different workloads and datasets are used, we only
test settings withǫ = 0.1 becauseǫ does not have much impact on
the relative performance of different mechanisms. In Figures 4, 5
and 6, we report the result error rates of all these mechanisms.

In all experiments, the approximate Matrix Mechanism (AMM)
is much worse than the other mechanisms, sometimes by an order
of magnitude. This is mainly because theL2 approximation used
by AMM does not lead to a good optimization of the actual objec-
tive function formulated using the error measure inL1. Because of
its poor performance, we exclude AMM in the rest of the experi-
ments.

On theWDiscreteworkload, the Laplace Mechanism (LM) out-
performs all other mechanisms when the domain size is relatively
small. This is in part due to the fact that the Wavelet Mechanism
(WM) and the Hierarchical Mechanism (HM) are mainly designed
to optimize range queries. While all other mechanisms incurlinear
error in terms of the domain sizen, LRM’s error stops increasing
when the domain size is larger than 512. This is because LRM’s
error relies on the rank of the workload matrixW , andrank(W )
is no larger thanmin(m,n) no matter how largen is. This ex-
plains the excellent performance of LRM on larger domains. On
theWRangeworkload, the errors of WM and HM are smaller than
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Figure 6: Effect of domain size n on workload WRelated with ǫ = 0.1
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Figure 7: Effect of number of queries m on workload WRange with ǫ = 0.1

LM when the domain size is no smaller than 512, in which case
their strategies work better. LRM’s performance is still signifi-
cantly better than any of them, since LRM fully utilizes the cor-
relations between these range queries on large domains. Finally,
on theWRelatedworkload, LRM achieves the best performance on
all test cases. The performance gap between LRM and other meth-
ods is over two orders of magnitude, when the domain size reaches
8192. SinceWRelatednaturally leads to a low rank workload ma-
trix W , this result verifies LRM’s vast benefit from exploiting the
low-rank property of the workload.

6.3 Impact of Varying Query Size m

In this subsection, we test the impact of the query set cardinality
m on the performance of the mechanisms. We mainly focus on
settings when the number of queriesm is no larger than the domain
sizen, i.e. m ≤ n. Due to space limitations, we only present the
results onWRangeandWRelatedworkloads in Figures 7 and 8.

The results lead to several interesting observations. OnWRange
workload (Figure 7), LRM outperforms the other mechanisms,when
the number of queriesm is significantly smaller thann. With grow-
ing m, the performance of all mechanisms onWRangetends to
converge. Whenm = 1024, WM achieves the best performance
among all mechanisms, since it is optimized for range queries. The
degeneration in performance of LRM is due to the lack of low rank
property when the batch contains too many random range queries.
On WRelatedworkload, LRM is dramatically better than the other
methods, for any query set cardinalitym. Regardless of the value
of m, the rank of theWRelatedworkloadW remains low, which is
solely determined by the parameters used in the workload genera-
tion procedure. These results further confirm that the squared error
generated by LRM scales linearly with the rank of the workload.

6.4 Impact of Varying Query Rank s

All previous experiments demonstrate LRM’s substantial perfor-
mance advantage when the workload matrix has low rank. In this

group of experiments, we manually control the rank of workload
W to verify the correctness of our claim. Recall that the param-
eters determines the size of the matrixCm×s and the size of the
matrix As×n in the generation of theWRelatedworkload. When
C andA contain only independent rows/columns,s is exactly the
rank of the workload matrixW = CA. In Figure 9, we varys from
0.1min(m,n) tomin(m,n). Compared to the other mechanisms,
LRM maintains an accuracy advantage of over two orders of mag-
nitude, when the rank of the workload matrix is low. With increas-
ing rank ofW , the accuracy of other mechanisms remain stable,
while LRM’s error grows rapidly. This phenomenon again con-
firms that the low rank property is the main reason behind LRM’s
advantages with respect to error minimization.

7. CONCLUSION
This paper presented theLow Rank Mechanism(LRM), an opti-

mization framework that minimizes the overall error in the results
of a batch of linear queries underǫ-differential privacy. LRM is the
first practical method for a large number of linear queries, with an
efficient and effective implementation using well established op-
timization techniques. Experiments show that LRM significantly
outperforms other state-of-the-art differentially private query pro-
cessing mechanisms, often by orders of magnitude. The current
design of LRM focuses on exploiting the correlations between dif-
ferent queries. One interesting direction for future work is to fur-
ther optimize LRM by utilizing also the correlations between data
values, e.g., as is done in [29, 24, 17].
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APPENDIX

A. PROOFS
Lemma 1:

PROOF. Based on the definition of the mechanism in Eq. (6),
the residual of the noisy result with respect to the exact result, i.e.

Q(D)−MP (Q,D), isB ·Lap
(

∆(B,L)
ǫ

)r

. The expected squared

error is thus
∑

ij B
2
ij

2(∆(B,L))2

ǫ2
. SinceΦ(B,L) =

∑

ij B
2
ij , the

expected error of the mechanism is2φ(B,L)(∆(B,L))2/ǫ2.

Lemma 2:
PROOF. Based on the definition of sensitivity, we have∆(B′, L′)

= maxj

∑

i |L′
ij | = maxj

∑

i |Lij/α| = α−1∆(B,L).
The last equality holds becauseα is a positive constant. On the

other hand, the scales of the decompositions follow a similar rela-
tionship:

Φ(B′, L′) =
∑

ij

(B′
ij)

2 =
∑

ij

α2(Bij)
2 = α2Φ(B,L)

Therefore,Φ(B′, L′)(∆(B′, L′)2 = Φ(B,L)(∆(B,L))2. Fi-
nally, sinceB′L′ = BL = W , we reach the conclusion of the
lemma.

Theorem 1:
PROOF. Assume that(B∗, L∗) is the best matrix decomposition

for minimizing the expected squared error forMP (Q,D). In the
following, we prove that(B∗, L∗) is optimal, if and only if it also
minimizes the program in Formula (7).

(if part): If (B,L) minimizes Formula (7) but(B,L) incurs
more expected error than(B∗, L∗), implying that

Φ(B∗, L∗)(∆(B∗, L∗))2 < Φ(B,L)(∆(B,L))2

By applying Lemma 2, we can construct another decomposi-
tion B′ = ∆(B∗, L∗)B∗ andL′ = ∆(B∗, L∗)−1L∗, such that
Φ(B′, L′)(∆(B′, L′))2 < Φ(B,L)(∆(B,L))2. On the other hand,
since∆(B′, L′) ≤ 1, we havemaxj

∑

i |L′
ij | = 1. Therefore, we

can derive the following inequalities.

Φ(B′, L′) = Φ(B′, L′)(∆(B′, L′))2

< Φ(B,L)(∆(B,L))2

≤ Φ(B,L)

Finally, sinceΦ(B′, L′) = tr(B′TB′) andΦ(B,L) = tr(BTB),
it leads to a contradiction if tr(B′TB′) < tr(BTB).

(only if part): If (B∗, L∗) is not the optimal solution to the pro-
gram in Formula (7), the optimal solution(B,L) must incur less
expected error, using a similar strategy. This completes the proof
of the theorem.

Lemma 3:

PROOF. To prove the lemma, we aim to artificially construct a
workload decompositionW = BL satisfying the constraints of the
optimization formulation. If the error of this artificial decomposi-
tion is no larger than the upper bound, the exact optimal solution
must render results with less error.

Recall thatW has a unique SVD decompositionW = UΣV
such thatΣ is a diagonal matrix of sizer × r. We thus build a
decompositionB =

√
rUΣ andL = 1√

r
V , in which r is the

rank of the matrixW . First, we will show such(B,L) satisfies the
constraints in Formula (7). It is straightforward to show itsatisfies
the first constraint:BL =

√
rUΣ 1√

r
V = UΣV = W .

Regarding the second constraint, sinceV only contains orthogo-
nal vectors, every columnj must have‖V:j‖2 = ‖v‖2 = 1. By the
norm triangle inequality,‖v‖2 ≤ ‖v‖1 ≤

√
r‖v‖2, and we obtain

1√
r

∑

i |Vij | ≤ 1. Therefore, such(B,L) must be a valid solution
to the program.

The expected squared error of the artificial decompositionW =
BL is at most

tr(BTB)/ǫ2 = tr((
√
rUΣ)T (

√
rUΣ))/ǫ2

= tr(ΣTUTUΣ))r/ǫ2

=
r
∑

k=1

λ2
kr/ǫ

2

This proves that
∑r

k=1 λ
2
kr/ǫ

2 is an upper bound for the noise
of our decomposition-based scheme.

Lemma 4:

PROOF. In Corollary 3.4 in [14], Hardt and Talwar proved that
anyǫ-differential privacy mechanism incurs expected squared error
no less than1 Ω(r3 (V ol(PWBn

1 ))
2/r /ǫ2).

In the formula above,Bn
1 is theL1-unit ball. V ol(PWBn

1 ) is
the volume of the unit ball after the linear transformation under
PW , in which P is any orthogonal linear transformation matrix
from Rm 7→ Rr. To prove the lemma, we construct an orthog-
onal transformationP using the SVD decomposition overW =
UΣV . By simply lettingP = UT , sinceUTU andV V T are iden-
tity matrices, we haveV ol(PWBn

1 ) = V ol(PUV V TΣV Bn
1 ) =

V ol(V (V TΣV )Bn
1 ) = V ol(V Bn

1 )
∏r

k=1 λk. The last equality
holds due to Lemma 7.5 in [14]. Consider the the convex body
V Bn

1 . It is an r-dimensional unit ball after the orthogonal trans-
formation underV . Note thatV ol(Br

1) can be computed using the
well known Γ function, as in [26],2r Γ(2)

Γ(1+r)
= 2r

r!
. Therefore,

the lower bound can be computed as:Ω(( 2
r

r!

∏r
k=1 λk)

2/rr3/ǫ2).
This reaches the conclusion of the lemma.

Theorem 2:

PROOF. To prove the theorem, we investigate the ratio of the
upper bound to the lower bound.

1[14] used absolute error in the paper, which we change to squared
error here.



∑r
k=1 λ

2
kr/ǫ

2

(

2r

r!

∏r
k=1 λk

)2/r
r3/ǫ2

≤
∑r

k=1 λ
2
1

(

2r

r!

∏r
k=1 λr

)2/r
r2

≤ rλ2
1

(

2r

r!

)2/r
λ2
rr2

=
C2

(

2r

r!

)2/r
r
≤
(

C

4

)2

r

The last inequality holds due to the fact thatr! <
(

r
2

)r
when

r > 5. Note that all the inequalities above are tight, and the equal-
ities hold whenC = 1, i.e. λ1 = λ2 = . . . = λr. Thus, we
prove that the approximation factor of our decomposition scheme
isO(C2r).

Theorem 3:
PROOF. WhenW 6= BL, the error has two parts. The first part

is the noises due to the Laplace random variables. Using Lemma 1,
the incurred error is at most2

ǫ2
Φ(B,L)(∆(B,L))2 ≤ 2

ǫ2
tr(BTB).

The second part of the error is the structural error on the results.
The expected squared error is measured as

((W −BL)D)T (W −BL)D

≤ ‖W −BL‖2FDTD = ‖W −BL‖2F
n
∑

i=1

x2
i

The inequality is due to the Cauchy Schwartz inequality. By
linearity of expectation, the expected squared errors can be simply
summed up. This leads to the conclusion of the theorem.

Theorem 4:
PROOF. We useB(k)∗ to denote the optimal solution of the La-

grangian sub-problem inkth iteration. Note the following inequal-
ity on the sequence of the Lagrangian subproblems:

J (B(k+1)∗, L(k+1)∗, π(k)∗, β(k))

= min
B,L
J (B,L, π(k)∗, β(k))

≤ min
‖W−BL‖F ≤γ,∀j ∑

i |Lij |≤1
J (B,L, π(k)∗, β(k))

= min
‖W−BL‖F ≤γ,∀j

∑
i |Lij |≤1

1

2
tr(BTB) =

1

2
tr(B∗TB∗)

Based on the above inequality, we derive the following inequal-
ity:

1

2
tr(B(k+1)TB(k+1))

= J (B(k+1)∗, L(k+1)∗, π(k)∗, β(k))− 〈π(k),W −B(k+1)

L(k+1)〉+ β(k)

2
‖W −B(k+1)L(k+1)‖2F

= J (B(k+1)∗, L(k+1)∗, π(k)∗, β(k))− 1

2β(k)
(‖π(k) + β(k)

(W −B(k+1)L(k+1))‖2F − ‖π(k)‖2F )

= J (B(k+1)∗, L(k+1)∗, π(k)∗, β(k))− 1

2β(k)
(‖π(k+1)‖2F

−‖π(k)‖2F )

≤ 1

2
tr(B∗TB∗)− 1

2β(k)

(

‖π(k+1)∗‖2F − ‖π(k)∗‖2F
)

The third equality holds because of the Lagrangian multiplier
update rule:

W −B(k+1)∗L(k+1)∗ =
1

β(k)

(

π(k+1)∗ − π(k)∗
)

Sinceπ(k)∗ is always bounded, we conclude that

1

2
tr
(

B(k+1)TB(k+1)
)

− 1

2
tr
(

B∗TB∗
)

≤ O
(

1

β(k)

)

This completes the proof of the theorem.

B. IMPLEMENTATION OF THE MATRIX
MECHANISM

In [16], Li et al. propose theMatrix Mechanism. The core of
their method is finding a matrixA to minimize the following the
program.

min
A∈Rr×n

‖A‖22,∞tr(W TWA†A†T ) (12)

Li et al. [16] present a complicated implementation that maynot
be practical due to its high complexity. We hereby present a sim-
pler and more efficient solution to their optimization program. Here
‖A‖22,∞ denotes the maximumL2 norm of column vectors ofA,
therefore‖A‖22,∞ = max(diag(ATA)). Since(ATA)−1 = (ATA)†

(A has full column rank), we letM = ATA, and reformulate For-
mula (12) as the following semidefinite programming problem:

min
M∈Rn×n

max(diag(M))tr(W TWM−1) s.t. M ≻ 0

A is given byA =
∑n

i

√
λiviv

T
i , whereλi, vi are theith

eigenvalue and eigenvector ofM , respectively. Calculating the
second term tr(W TWM−1) is relatively straightforward. Since
it is smooth, its gradient can be computed as−M−1W TWM−1.
However, calculating the first termmax(diag(M)) is harder since
it is non-smooth. Fortunately, inspired by [7], we can stilluse a
logarithmic and exponential function to approximate this term.

Approximate the maximum positive number: SinceM is pos-
itive definite,v = diag(M) > 0. we letµ > 0 and define:

fµ(v) = µ log
n
∑

i

(

exp

(

vi
µ

))

(13)

We then havemax(v) ≤ fµ (v) ≤ max(v) + µ log n. If we set
µ = ǫ

log n
, this becomes a uniformǫ-approximation ofmax(v)

with a Lipschitz continuous gradient with constantω = 1
µ
= log n

ǫ
.

The gradient of the objective function with respect tov can be com-
puted as:

∂f

∂vi
=

exp
(

vi−max(v)
µ

)

∑n
j

(

exp
(

vj−max(v)

µ

)) (14)

To mitigate the problems with large numbers, using the prop-
erty of the logarithmic and exponential functions, we can rewrite
Eq.(13) and Eq. (14) as:

fµ(v) = max(v) + µ log

(

n
∑

i

exp

(

vi −max(v)

µ

)

)

∂f

∂vi
=

(

n
∑

j

exp

(

vj − vi
µ

)

)−1

This formulation allows us to run the non-monotone projected
gradient descent algorithm [2] and iteratively improves the result.
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