
Analyzing Subgraph Statistics from Extended Local Views with
Decentralized Differential Privacy

Haipei Sun

Qatar Computing Research

Institute

Stevens Institute of

Technology

hsun15@stevens.edu

Xiaokui Xiao

National University of

Singapore

xkxiao@nus.edu.sg

Issa Khalil

Qatar Computing Research

Institute

ikhalil@hbku.edu.qa

Yin Yang

Hamad Bin Khalifa

University

yyang@hbku.edu.qa

Zhan Qin

SCST
∗
,AZFT

†
, Zhejiang

University

qinzhan@zju.edu.cn

Hui (Wendy) Wang

Stevens Institute of

Technology

hwang4@stevens.edu

Ting Yu

Qatar Computing Research

Institute

tyu@hbku.edu.qa

ABSTRACT
Many real-world social networks are decentralized in nature, and

the only way to analyze such a network is to collect local views of

the social graph from individual participants. Since local views may

contain sensitive information, it is often desirable to apply differen-
tial privacy in the data collection process, which provides strong

and rigorous privacy guarantees. In many practical situations, the

local view of a participant contains not only her own connections,

but also those of her neighbors, which are private and sensitive for

the neighbors, but not directly so for the participant herself. We call

such information beyond direct connections an extended local view
(ELV), and study two fundamental problems related to ELVs: first,

how do we correctly enforce differential privacy for all participants

in the presence of ELVs? Second, how can the data collector utilize

ELVs to obtain accurate estimates of global graph properties?

This paper points out that when collecting ELVs, it is insufficient

to apply a straightforward adaptation of local differential privacy
(LDP), a commonly used scheme in practice, to protect the privacy

of all network participants. The main problem is that an adversarial

data collector can accumulate private information on a specific

victim from multiple neighbors of the victim; even though the

data collected from each neighbor is perturbed under LDP, their

aggregate can still violate the victim’s privacy. To prevent this

attack, we formulate a novel decentralized differential privacy (DDP)
scheme, which requires that each participant consider not only her

own privacy, but also that of her neighbors involved in her ELV.

The stringent privacy requirement of DDP, however, makes it

challenging to design an effective mechanism for data collection.

∗
School of Cyber Science and Technology

†
Alibaba-Zhejiang University Joint Institute of Frontier Technologies

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00

https://doi.org/10.1145/3319535.3354253

Towards this goal, we design a novel multi-phase framework un-

der DDP that enables an analyst to accurately estimate subgraph

counts, an important property of social graphs. The main idea is

that instead of collecting subgraph counts directly, which would

require excessively noise, the analyst first asks individuals about

their respective minimum noise scale, which is private information

since it depends on the local graph structure, and, thus, must be

performed under DDP. For some types of subgraphs, this process is

applied recursively, i.e., the analyst asks about the necessary noise

to be injected into the private information on the minimum local

noise scale required to protect subgraph counts under DDP. As

case studies, we instantiate the proposed framework for three com-

mon subgraph patterns: triangles, three-hop paths, and k-cliques.
Extensive experiments using real data demonstrate that the pro-

posed scheme leads to accurate estimates of global subgraph counts,

whereas baseline solutions fail to obtain meaningful result utility.

CCS CONCEPTS
• Security and privacy → Data anonymization and sanitiza-
tion.

KEYWORDS
decentralized differential privacy; subgraph statistics; social net-

works

ACM Reference Format:
Haipei Sun, Xiaokui Xiao, Issa Khalil, Yin Yang, Zhan Qin, Hui (Wendy)

Wang, and Ting Yu. 2019. Analyzing Subgraph Statistics from Extended

Local Views with Decentralized Differential Privacy. In 2019 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’19), November
11–15, 2019, London, United Kingdom. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3319535.3354253

1 INTRODUCTION
In this paper, we consider the problem of analyzing a decentralized
social network, in which the analyst cannot directly obtain infor-

mation on the global structure of the network. Instead, the analyst

needs to communicate with individual participants of the network,

each of which has a limited local view of the whole social graph.

Then, the analyst combines information from different participants

https://doi.org/10.1145/3319535.3354253
https://doi.org/10.1145/3319535.3354253

to estimate the global network properties. The setting of decen-

tralized social networks could arise due to a variety of reasons.

First, many social networks are inherently decentralized as there is

no central organizer. For instance, the contact lists in everybody’s

mobile phones could be pieced together to form a giant contacts

social network, though no single entity is aware of the whole net-

work structure. Second, even when there is a centralized entity that

possesses the knowledge of the entire network, that entity may

choose not to share it with the analyst, out of business, legal or

other considerations. For example, an organization operating an

anonymous messaging app could see who messages whom (though

not necessarily message contents). However, it would be difficult

to share such a communication network with outsider analysts.

Collecting information of users’ local views has a clear privacy

implication, as they often reflect sensitive social interactions among

individuals. Any analysis of decentralized social networks thus has

to ensure rigorous protection of privacy. In this paper we consider

private data collection under the differential privacy scheme [11],

in which each individual injects random noise into her private

information, and only releases the perturbed version to the data

collector; the exact private information is never revealed. The scale

of random noise is calibrated according to a pre-defined privacy
budget [11]. A lower privacy budget leads to stronger perturbation

and lower accuracy of the analysis, and vice versa.

In many social networks, a participant is aware of not only

her own connections, but also a broader subgraph in her local

neighborhood.We call such a subgraph an extended local view (ELV).
For instance, with the default setting of Facebook (facebook.com),

a user allows each of her friends to see all her connections. In the

offline world, we also commonly accumulate knowledge on the

relationships between our friends, e.g., when we attend a social

event together. Hence, the ELV of a social network participant often
contains multi-hop neighbors and their connections. Accordingly, the
participant could reveal private information about her neighbors’

connections to the data collector. To our knowledge, this is the first

study that considers this problem: that an individual must protect

not only her own privacy, but also the privacy of her neighbors.

The presence of ELVs poses new challenges for privacy protec-

tion. As pointed out in Section 2, a straightforward application of

local differential privacy (LDP) [13], a popular scheme used in sev-

eral major software systems such as Google Chrome [13] and Apple

iOS / macOS [38], fails to provide sufficient privacy protection in

this case. The deficiency comes from the fact that in LDP, each

individual has her privacy budget locally, which covers her entire

ELV regardless of what specific information from the ELV is col-

lected. Therefore, an adversarial data collector with a target victim

in mind can gather multiple reports of the same private information

(e.g., whether the victim has a politically sensitive connection) from

multiple individuals in the victim’s neighborhood, and combine

them to infer the sensitive connection with high confidence.

We address the above problem with a new privacy preservation

scheme called decentralized differential privacy (DDP). As explained
in Section 2, all participants of the social network share the same

privacy budget, which covers the entire social graph; each individ-

ual, when reporting information about her ELV to the data collector,

must ensure that the released information is sufficiently perturbed

to protect all graph participants, i.e., the data collector cannot infer

the presence or absence of any edge in the graph from all collected

reports. Under DDP, however, it is rather challenging to design

an effective mechanism to obtain high result utility of an analysis,

since the privacy definition is over the global graph, whereas data

come from individual local views.

Towards the goal of accurate social graph analysis under DDP,

we propose a multi-phase framework for subgraph counting, a

fundamental type of graph analyses, under (ϵ , δ)-decentralized
differential privacy (defined in Section 2), where ϵ represents the
total privacy budget for all nodes in the social graph, and δ controls

the probability that every node’s privacy is preserved. The main

idea is that instead of collecting information (i.e., local subgraph

counts) directly, whichwould require excessive noise to cover worst-

case scenarios, the analyst first asks each node in the network

(corresponding to an individual) about the minimum amount of

noise necessary to protect the node’s local subgraph count under

DDP. In a subsequent phase, the analyst determines the minimum

noise scale for the whole network, and collects subgraph counts

accordingly. Since the noise scale now reflects the true social graph

structure rather than pathological, worst-case scenarios, the end

result is often significantly more accurate than directly collecting

subgraph counts from nodes.

Note that in the first phase, i.e., minimum noise scale computa-

tion, the noise scale reported by a node depends on the structure

of its ELV, which is private information. Therefore, the noise scale

itself must be perturbed to satisfy DDP. In the process of DDP-

compliant collection of noise scale, we can recursively apply the

above framework. In particular, the analyst first asks each node to

report the (second-level) minimum noise scale necessary to perturb

the (first-level) noise scale for subgraph counts. Then, the analyst

aggregates the second-level noise scale information to obtain a tight

bound on the noise for subgraph counts. The second-level noise

scale, in turn, depends on the nodes’ ELV structures, and needs to

be collected under DDP.

We instantiate this framework with several different types of sub-

graph patterns, including triangles, three-hop paths, and k-cliques,
each with its own specific optimizations. Extensive experiments,

using multiple real datasets, confirm that the proposed methods

obtain significantly higher result utility compared to baseline solu-

tions as well as existing ones.

In summary, we make the following contributions in the paper:

• We propose decentralized differential privacy, a new privacy

protection scheme for graph analysis that correctly enforces

differential privacy for all social network participants, in the

presence of extended local views.

• We design a novel multi-phase, recursive framework that

utilizes local graph structures to accurately estimate global

subgraph counts in a decentralized graph, under the (ϵ , δ)-
DDP requirement.

• We instantiate the proposed multi-phase framework on com-

mon subgraph patterns such as triangles, three-hop paths

and k-cliques, and develop pattern-specific optimization for

each case.

• We conduct comprehensive experiments over several real

social graphs. The results show that the proposed technique

consistently outperforms baseline and existing solutions in

terms of result accuracy, by large margins.

2 BACKGROUND AND DECENTRALIZED
DIFFERENTIAL PRIVACY

2.1 Differential Privacy
Since first proposed byDwork et al. [11], differential privacy quickly

becomes a de facto standard privacy definition in sensitive data anal-

ysis and publishing. Differential privacy was originally designed

for the centralized setting, where a database of private user infor-

mation is managed by a trust party, who answers queries about the

database while preserving each user’s privacy. Formally, we have

the following definition:

Definition 2.1 (Differential privacy). A randomized mechanism

M satisfies (ϵ,δ)-differential privacy, if for any pair of neighboring

datasets D and D ′
that differ by one record, and any set of possible

outputs S ⊆ ranдe(M), we have

Pr(M(D) ∈ S) ≤ Pr(M(D ′) ∈ S) · eϵ + δ .

When δ = 0,M satisfies ϵ-differential privacy.

Essentially, differential privacy ensures that from the output of

M, one cannot distinguish whether the input is D or D ′
with high

confidence. ϵ is often called the privacy budget, as it controls the
strength of privacy protection offered by differential privacy.

One common technique to achieve differential privacy is the

Laplace mechanism [11], which adds noise following the Laplace

distribution to obfuscate the true outcome of a query. Specifically,

let f : D → Rd be a function, where D is a set of datasets and

d is a positive integer. The sensitivity of f , denoted ∆f , is given
by ∆f = max ∥ f (D) − f (D ′) ∥1, over all pairs of neighboring

datasets D and D ′
. It has been shown that M(D) = f (D) + Y ,

where Y ∼ Lap(
∆f
ϵ), satisfies ϵ-differential privacy [11]. We also

call λ =
∆f
ϵ the scale of the Laplace noise.

Differential privacy is composable: given t randomized mecha-

nisms M1, . . . ,Mt that satisfy (ϵ1,δ1), . . . , (ϵt ,δt)-differential pri-
vacy respectively, the sequential composition of Mi (D) satisfies
(
∑t
i=1 ϵi ,

∑t
i=1 δi)-differential privacy.

2.2 Decentralized Differential Privacy
Let G = (V ,E) be a social graph, where V is the set of participants

and E is the set of edges. For simplicity, we assumeG is undirected.

A data analyst, who have no access to the whole graph G, aims

to estimate global statistical properties of G, e.g., the number of

occurrences of a given subgraph such as triangles or cliques. To

do so, the analyst collects information from each participant, i.e.,

nodes in V . Each node v ∈ V has an extended local view (ELV) ofG ,
denoted Gv , which corresponds to a subgraph of G surrounding v .

Since each node v clearly knows all its direct connections, its

ELVGv always contains (i) all edges involvingv and (ii) all one-hop

neighbors ofv , each of which (say, nodeu) satisfies that there exists
an edge (u,v) ∈ E. In this paper, we focus on a common type of ELV

that also includes two-hop neighbors
1
, as defined in the following.

Definition 2.2 (Two-Hop Extended Local View). Given a node v ∈

V , its two-hop extended local view (ELV) Gv consists of:

• v’s one-hop neighbors: {u | u ∈ V ∧ (u,v) ∈ E}.

1
We leave ELVs beyond two-hop neighborhoods for future work as they are less

common in practice.

v1

v2

v3
v4

v5

v1’s local view

v1

v2

v3
v4

v5 v6

v7
v8

v9

The global graph G

v3

v5 v6

v7
v8

v9

v4

v8’s local view

Figure 1: Example of two-hop ELVs

• Edges involving v : {e = (v,u) | e ∈ E}.
• v’s two-hop neighbors: {w | ∃u ∈ V , (u,v) ∈ E∧(u,w) ∈ E}.
• Edges involving v’s one-hop neighbors: {e = (u,w) | e ∈

E ∧ (u,v) ∈ E}

Figure 1 shows an example with 9 nodes v1, . . . ,v9. The ELV of

v1 contains its one-hop neighbors v2 and v3, two-hop neighbors

v4 and v5, as well as the edges between these nodes. Similarly, the

ELV ofv8 consists of nodesv5,v7,v9 (one-hop neighbors),v3,v4,v6
(two-hop neighbors), 3 edges betweenv8 and its one-hop neighbors,
2 edges between its one-hop neighbors, e.g., (v9,v7)), and 4 edges

connecting its one-hop and two-hop neighbors, e.g., (v5,v4).
In our setting, since the analyst needs to collect information

from all social network participants, we assume that the analyst

already knows their identities (i.e., membership in V), and the

private information is on the connections between them (i.e., E). In
other words, we focus on the edge privacy model [20]. This leads

to the following definition of neighboring graphs:

Definition 2.3 (Neighboring graphs). Two graphs G and G ′
are

neighboring graphs if G and G ′
only differ in one edge, i.e., G ′

can

be obtained by adding or removing one edge from G.

Why local differential privacy is insufficient. Before present-
ing our privacy model, we first explain why a straightforward

application of local differential privacy (LDP) [13] fails to provide

adequate privacy protection in the presence of ELVs. Specifically,

in LDP, each individual has her privacy budget locally, and submits

a report based on her local data to the analyst, which is perturbed

to satisfy differential privacy. In our setting, the local data of an

individual v is her ELV Gv ; thus, LDP ensures that the data collec-

tor cannot distinguish v’s exact dataGv from a neighbor dataset,

which in our setting would be a neighbor graph (Definition 2.3) of

Gv . Formally, we define (ϵ , δ)-LDP as follows:

Definition 2.4 (Local differential privacy). Given a node v ∈ V
and its ELVGv , a randomized mechanismM satisfies (ϵ , δ)-LDP,
iff. for any neighboring graphG ′

v of Gv and any set S of possible

outputs ofM, we have Pr(M(Gv) ∈ S) ≤ Pr(M(G ′
v) ∈ S) · eϵ + δ .

To see why the above privacy definition is insufficient, consider

the case where an adversarial data collector with a specific target

victim u aims to find whether u is connected to another node v .
To do so, the data collector asks u, as well as all of its one-hop
neighbors, to report a binary value on whether edge (u, v) exists.
After that, the data collector computes the mean value of these

binary reports. Although each report satisfies LDP, the mean value

over multiple reports yields an increasingly accurate estimate of

the true value as the number of reports grows. With a sufficiently

large number of reports, the adversary obtains high confidence on

whether edge (u, v) exists. This clearly violates the privacy of u.

Decentralized differential privacy. The key reason that the

above definition of LDP fails to provide adequately protection on

the social network participants’ privacy, is that each participant

only considers her own privacy when releasing information to the

data collector, and the released information compromises her neigh-
bors’ privacy. To remedy this, we propose a decentralized differential
privacy (DDP) scheme, which ensures that the data collector cannot

infer the presence of absence of any edge in the graph from the set

of all reports collected from all network participants. In particular,

we first define the notion of neighboring ELV, as follows.

Definition 2.5 (Neighboring extended local views). Given a graph

G = (V ,E), a nodev ∈ V , its ELVGv ⊆ G , and a neighboring graph
G ′

of G. The neighboring ELV G ′
v of Gv with respect to G ′

is then

the ELV of v in G ′
.

Note that in the above definition, a neighboring ELV G ′
v of Gv

is not the same as a neighbor graph of Gv as Definition 2.3. In

particular, two neighboring ELVs may not contain the same set of

nodes, and can differ in multiple edges. For instance, in Figure 1, if

we remove edge (v1, v2) from G, then node v4 is no longer in the

ELV of v1, since it is now a three-hop neighbor of v1. Similarly, if

we add a new edge (v1, v8) toG , then nodes v7-v9 enter the ELV of

v1, along with all the edges connecting them. Based on the notion of

neighboring ELVs, we define the proposed decentralized differential
privacy (DDP) scheme, as follows.

Definition 2.6 (Decentralized differential privacy). Given a set of

nodesV = v1,v2, . . .vn , a set of randomized mechanisms {Mi , 1 ≤

i ≤ n} collectively satisfy (ϵ , δ)-DDP, iff. for any two neighboring

graphs G = (V ,E) and G ′ = (V ,E ′), and any subsets of possible

outputs {Si ⊆ ranдe(M), 1 ≤ i ≤ n}, we have:

Pr(M1(G1) ∈ S1, . . . ,Mn (Gn) ∈ Sn)

≤ Pr(M1(G
′
1
) ∈ S1, . . . ,Mn (G

′
n) ∈ Sn) · e

ϵ + δ ,

where Gi and G
′
i (1 ≤ i ≤ n) are the neighboring ELVs of vi with

respect to G and G ′
, respectively. In addition, since our DDP is

under the (ϵ,δ)-DP framework, the composition rule still applies.

Discussion. Similar to the case of LDP (Definition 2.4), in DDP

each node vi applies its own randomized mechanism Mi (Gi) on

its local data, i.e., its ELVGi . In other words, no knowledge of the

global graphG is required when nodevi computes its reportMi to

be submitted to the data collector. On the other hand, unlike LDP

where each node independently preserves its own privacy without

any consideration for its neighbors, DDP covers the set of all mech-

anisms applied to all nodes as a whole, and protects all edges in

the entire social graph G. Hence, the attack on LDP in which the

data collector obtains multiple reports on the same information no

longer works under DDP, since the latter by definition guarantees

that the data collector cannot infer the presence of absence of an

edge from all collected reports.

Our problem is different from existing LDP applications where

users have independent data, e.g., collecting browser usage [13].

Instead, DDP can be viewed as a generalization of LDP when users’

data are dependent, following the general principle of differential

privacy in the local setting [10].

Designing effective mechanisms under DDP, however, is also

significantly more challenging compared to the case of LDP. The

main difficulty is that when generating a perturbed reportMi , each

node vi must consider all possible neighbor graphs of the global

graph G; yet, vi does not know G, except for its own ELV Gi . We

address this problem in the next section.

3 A GENERAL FRAMEWORK FOR
SUBGRAPH COUNTING UNDER DDP

In this paper, we focus on a fundamental problem in graph analysis:

subgraph counting, under the decentralized differential privacy

requirement in Definition 2.6. Specifically, let д be a given subgraph

pattern, e.g., a triangle, a k-clique, etc., the data analyst aims to

estimate the number of occurrences of д in the global graph G, by
collecting data from each node in G under (ϵ , δ)-DDP.

Given a node vi ∈ V and its two-hop ELV Gi , we define γд(vi)
as the exact number of occurrences of д in Gi that involve vi itself.
In other words, occurrences of д in Gi that does not contain vi are
not counted in γд(vi). In the non-private setting, the data analyst

simply collects the exact γд(vi) from each vi , and aggregates them

to obtain the total number of occurrences of д in the whole graph

G . For example, when д is a triangle, the analyst simply adds up the

local triangle counts from every node, and then divides the result

by 3, since every triangle is reported 3 times by each of its nodes.

Under the DDP requirement, each node vi cannot reveal the
exact γд(vi), as it depends on vi ’s private information Gi . Instead,

each vi submits a perturbed report Mi (Gi) generated through a

DDP-compliant mechanism Mi . For instance, one straightforward

approach, explained below in Section 3.1, is to let each vi submit

a noisy version γ ∗д (vi) of γд(vi), perturbed under DDP. In general,

the mechanismMi applied at each nodevi can be different, as long

as the set of all Mi ’s for 1 ≤ i ≤ n satisfy DDP as in Definition 2.6.

In our setting, we assume that the data analyst as well as all

participants of the social network strictly follow the proposed pro-

tocols. In other words, the adversary is honest but curious. The case
where the analyst actively breaks the protocol to gain private in-

formation, possibly in collusion with some of the network nodes,

is out of the scope of this paper, and left as future work.

3.1 A Baseline Approach
We first present a baseline approach, referred to as Pessimistic
Laplace mechanism, in which the analyst directly collects perturbed

subgraph counts from the participants under DDP. As shown soon,

this method incurs a prohibitively high amount of noise, due to the

fact that in order to satisfy DDP, the method has to consider patho-

logical worst-case scenarios that necessitate heavy perturbations.

This highlights the challenge of mechanism design under DDP.

Pessimistic Laplace mechanism follows the standard Laplace

mechanism [11]. Specifically, we first extend the notion of sensitivity
(explained in Section 2.1) to the DDP setting, as follows.

Definition 3.1 (Sensitivity under DDP). Given a set of nodes V =
{vi | 1 ≤ i ≤ n}, and a function f , the sensitivity of f is defined as:

∆(f) =maxG,G′

n∑
i=1

| f (Gi) − f (G ′
i)|,

where G and G ′
are two arbitrary neighboring social graphs with

the set of nodes V , and {Gi } and {G ′
i } (1 ≤ i ≤ n) are the sets of

neighboring ELVs with respect to G and G ′
, respectively.

In Pessimistic Laplace mechanism, given a subgraph pattern д,
each participant directly reports a noisy version of its subgraph

count γд(vi). Formally, f = Γд , where Γд(Gi) = γд(vi). The sensi-
tivity ∆(Γд) of Γд , however, is prohibitively high, leading to poor

result utility.

To explain, consider a simple case where д is a triangle. (Other
cases of д are discussed later in Section 4.) We have ∆(Γ△) = 3(n−2)
since (i) in the worst case, an edge (u, v) in an n-node graph can

appear in n − 2 triangles, when both u and v are connected to

all other nodes in the entire social graph, and (ii) each triangle

is reported three times by its three vertices, respectively. Note

that to satisfy DDP, in which privacy is defined over the entire

graph G, we must consider all possible cases of G, including the

above worst case. According to the following lemmata, adding

Laplace noise Lap
(
3(n−2)
ϵ

)
intoγ△(vi) ensures ϵ-DDP, but leads to a

prohibitively high noise variance in the resulting estimated triangle

count: O
(
n3

ϵ 2

)
. Note that the noise variance only depends on the

number of n, regardless of the structure of the actual social graph
G, since the sensitivity is derived from the worst-case scenario.

Lemma 3.2. Adding i.i.d. Laplace noise Lap
(
3(n−2)
ϵ

)
to γ△(vi) of

each vi satisfies ϵ-DDP 2.

Lemma 3.3. Pessimistic Laplace mechanism leads to O
(
n3

ϵ 2

)
vari-

ance in the estimated total triangle count.

Discussion. The above description of Pessimistic Laplace ensures

ϵ-DPP, which can be viewed as (ϵ , δ)-DDP for the strict case that

δ = 0. When δ > 0, we can improve its accuracy as follows. Each

node vi reports its exact subgraph count γд(vi) with probability

δ , and the perturbed subgraph count (according to the above ap-

proach) otherwise. Alternatively, we could follow the Gaussian

mechanism [1] instead of the Laplace mechanism, which we call

the Pessimistic Gaussian mechanism. Neither of these approaches,

however, addresses the core issue that we inject noise according

to some pathological worst-case scenario, regardless of the actual

structure of the social graph G. As our experiments in Section 5

shows, none of these baseline approaches obtain competitive result

accuracy.

3.2 Proposed Multi-Phase Framework
Local sensitivity. Observe that the main reason that Pessimistic

Laplace mechanism incurs a high noise variance is that it injects

noise based on the global sensitivity of the graph count function

Γд , which is determined by a worst-case scenario. In real social net-

works, however, such pathological scenarios are rare. The proposed

2
Proofs can be found in the Appendix.

framework avoids the excessive noise due to the worst case, by

employing the concept of local sensitivity [30], defined as follows.

Definition 3.4 (Local sensitivity under DDP). Given a global graph

G = (V ,E) containing nodes V = {vi |1 ≤ i ≤ n}, and a function f .
The local sensitivity of f is defined as:

LS(f) =maxG,G′

n∑
i=1

| f (Gi) − f (G ′
i)|,

where G ′
is an arbitrary neighboring graph of G, and {Gi } and

{G ′
i } (1 ≤ i ≤ n) are the sets of ELVs with respect to G and G ′

,

respectively.

For instance, in the case of triangle counting, we have LSG (Γ△) =
maxG′

∑n
i=1 |γ△(vi) − γ

′
△(vi)|, where G

′
is any neighboring graph

of G, and γ ′△(vi) denotes the triangle count to be reported by

vi in G ′
. In other words, LSG (Γ△) measures the maximum num-

ber of triangles affected by adding or removing one edge in G. If
LSG (Γ△) ≪ n − 2, is it sufficient to ask each user to inject Laplace

noise Lap
(
3LSG (Γ△)

ϵ

)
into her triangle count? Unfortunately, the

answer is no: it has been shown in the literature [30] that injecting

noise according to local sensitivity fails to satisfy differential pri-

vacy. Figure 2 shows an example in the same setting as in Figure

1. Consider the task of triangle counting. The local sensitivity at

node v1 is 1, since adding / removing any edge in the global graph

G (shown in Figure 1) can only change the number of triangles

in G1 by at most 1. Observe that the local sensitivity value at v1
in fact only depends on its ELV G1, regardless of the structure of

G outside G1. Now, consider a neighbor graph G ′
of G, which is

identical toG except for one addition edge (v1, v8). OnG
′
, the local

sensitivity of triangle counting atv1 becomes 2, e.g., adding an edge

(v1, v5) leads to two additional triangles. Therefore, the value of

the local sensitivity reveals whether the global is G or G ′
, meaning

that using its exact value in the randomized mechanism Mi would

violate differential privacy.

In the traditional, centralized setting of differential privacy, there

exist solutions (e.g., [22, 24, 30, 42]) that correctly inject noise based

on an adjusted version of local sensitivity. However, as reviewed in

Section 6, none of them applies to our setting, since they all rely

on knowledge about the global graph G. Our proposed framework

directly tackles the root problem that local sensitivity fails to satisfy

differential privacy: that the noise scale itself is private information.

The idea is simple: we still injects Laplace noise into each node’s

subgraph count γд(vi), but the scale of the noise is not determin-

istic. Instead, the noise scale is a random variable sampled from

a carefully chosen distribution, such that with 1 − δ probability,

the injected Laplace noise can conceal the existence or absence of

any particular edge in G. This idea is explored in previous work

[21, 24] under the centralized differential privacy model (CDP). But

its adoption in the DDP setting is highly non-trivial due to the

fundamental differences between CDP and DDP.

Two-phase framework. Let д be a subgraph pattern and Γд =
{γд(v1), . . . ,γд(vn)} be the set of subgraph counts that each user

is asked to report. Our solution consists of two phases. Phase 1

applies an (ϵ1,δ1)-DDP algorithm to collect information about each

user, and decides an appropriate noise scale λ. After that, Phase 2
asks each user to report her subgraph count injected with Laplace

v1

v2

v3
v4

v5

v1’s local view G1

v1

v2

v3
v4

v5

The local sensitivity of G1 is 1
v1

v2

v3
v4

v5

A neighboring local view G’1 of G1

v1

v2

v3
v4

v5

v8

v1

v2

v3
v4

v5

v8

v1

v2

v3
v4

v5

v8

The local sensitivity of G’1 is 2

Figure 2: Local view sensitivity

noise Lap(λ), and we show that this satisfies ϵ2-DDP with at least

1 − δ2 probability, for some ϵ2 and δ2. According to the sequential

composition property of differential privacy (explained in Section

2.1), the two-phases as a whole satisfies (ϵ,δ)-DDPwhere ϵ = ϵ1+ϵ2
and δ = δ1 + δ2. It turns out that Phase 1 of our solution needs

to be custom-designed for different types of subgraph patterns д,
which we detail in Section 4. In what follows, we present the main

requirements for Phase 1 necessary for the proposed framework to

satisfy (ϵ , δ)-DDP.
Let λ be the noise scale returned by Phase 1 given a graphG . We

require that λ satisfy the following two conditions:

(1) λ is generated using an (ϵ1,δ1)-DDP algorithm.

(2) With at least 1 − δ2 probability, we have

ϵ2 · λ ≥ LSG
(
Γд

)
. (1)

Intuitively, in the above two-phase framework, Phase 1 essen-

tially aims to establish an upper bound on the local sensitivity

LSG (Γд) to be used in Phase 2. This upper bound is estimated by

λ
ϵ2 . There is a chance (i.e., with probability δ2) that Phase 1 can fail,

in which case
λ
ϵ2 < LSG (Γд). Such failures are tolerated by the (ϵ ,

δ)-differential privacy definition as long as the failure probability

satisfies δ2 < δ . Meanwhile, in the framework Phase 1 is left as a

black box, as long as it satisfies the above conditions.

From two-phase to multi-phase. In the above framework, Phase

1 is a black box that involves an (ϵ1, δ1)-DDP mechanism to com-

pute λ. This mechanism can be realized by recursively applying

the two-phase framework itself, leading to a multi-phase solution.

Specifically, we split Phase 1 into two sub-phases: Phase 1.1 and

Phase 1.2. Meanwhile, we partition the privacy parameters (ϵ1, δ1)
allocated to Phase 1 into (ϵ1,1, δ1,1) and (ϵ1,2, δ1,2), and assign them

to Sub-Phases 1.1 and 1.2, respectively.

As before, in Sub-Phase 1.1, we estimate an appropriate noise

scale λ1 using a black box (ϵ1,1, δ1,1)-DDP mechanism. Then, Sub-

Phase 1.2 applies the Laplace mechanism, which, when used with a

correct noise scale, satisfies ϵ1,2-differential privacy. Sub-Phase 1.1
has a probability δ1,2 to fail, i.e., its output noise scale is not suffi-

ciently large for Sub-Phase 1.2 to satisfy ϵ1,2-differential privacy.
Essentially, Sub-Phase 1.1 estimates the local sensitivity

LSG (LSG (Γд)) of local sensitivity LSG (Γд) of graph counts. Its out-

put is an upper bound of the true LSG (LSG (Γд)) with probability

1 − δ1,2. Then, Sub-Phase 1.2 uses the estimated LSG (LSG (Γд)) to

output an estimated LSG (Γд), which is an upper bound of its true

value with probability 1 − δ2. Finally, Phase 2 applies the estimated

LSG (Γд) to obtain randomized subgraph counts. A concrete instan-

tiation is presented later in Section 4.2.

Correctness of the framework. To formally establish the correct-

ness of the proposed multi-phase framework, it suffices to prove

the two-phase case; the multi-phase case can then be proved by

induction. For the two-phase framework, we prove that the two

requirements for Phase 1 (i.e., it satisfies (ϵ1, δ1)-DDP and its output

λ satisfies Inequality (1) with probability 1 − δ2) ensure that our
solution achieves (ϵ,δ)-DDP for ϵ = ϵ1 + ϵ2 and δ = δ1 + δ2.

Let (λ,Y) denote the output of Phase 1, and Γ∗д denote the set

of noisy subgraph counts returned by Phase 2. Here, Y represents

all additional private information besides λ that is revealed to the

data collector during Phase 1. Let Sλ (resp. SΓ) be an arbitrary set

of possible outputs from Phase 1 (resp. Phase 2). We will establish

the privacy guarantee of our solution by showing that, for any

neighboring graphs G and G ′
and for any Γ∗д , λ, and Y ,

Pr

[
Γ∗д ∈ SΓ , (λ,Y) ∈ Sλ

��� G]
≤ eϵ · Pr

[
Γ∗д ∈ SΓ , (λ,Y) ∈ Sλ

��� G ′
]
+ δ . (2)

Let S′
λ be the subset of Sλ such that

S′
λ =

{
(λ,Y)

�� (λ,Y) ∈ Sλ ∧ ϵ2 · λ ≥ LSG
(
Γд

)}
.

We have

Pr

[
Γ∗д ∈ SΓ , (λ,Y) ∈ Sλ

��� G]
= Pr

[
Γ∗д ∈ SΓ , (λ,Y) ∈ S′

λ

��� G]
+ Pr

[
Γ∗д ∈ SΓ , (λ,Y) ∈ Sλ \ S

′
λ

��� G]
≤ Pr

[
Γ∗д ∈ SΓ , (λ,Y) ∈ S′

λ

��� G]
+ δ2, (3)

since Phase 1 ensures Eq. (1) with at least 1 − δ2 probability. Then,
to prove Eq. (2), it suffices to show that

Pr

[
Γ∗д ∈ SΓ , (λ,Y) ∈ S′

λ

��� G]
≤ eϵ · Pr

[
Γ∗д ∈ SΓ , (λ,Y) ∈ S′

λ

��� G ′
]
+ δ1. (4)

Since (λ,Y) is generated using an (ϵ1,δ1)-DDP algorithm, we have

Pr

[
(λ,Y) ∈ S′

λ

�� G]
≤ eϵ1 · Pr

[
(λ,Y) ∈ S′

λ

�� G ′
]
+ δ1.

Therefore,

Pr

[
Γ∗д ∈ SΓ , (λ,Y) ∈ S′

λ

��� G]
= Pr

[
Γ∗д ∈ SΓ

��� (λ,Y) ∈ S′
λ ,G

]
· Pr

[
(λ,Y) ∈ S′

λ

�� G]
≤ Pr

[
Γ∗д ∈ SΓ

��� (λ,Y) ∈ S′
λ ,G

]
·

(
eϵ1 · Pr

[
(λ,Y) ∈ S′

λ

�� G ′
]
+ δ1

)
≤ eϵ1 · Pr

[
Γ∗д ∈ SΓ

��� (λ,Y) ∈ S′
λ ,G

]
· Pr

[
(λ,Y) ∈ S′

λ

�� G ′
]
+ δ1

(5)

We will show that for any x ≥ LSG (Γд)/ϵ2, any y, and any set ϒ
of noisy subgraph counts,

Pr

[
Γ∗д = ϒ

��� λ = x ,Y = y,G
]
≤ eϵ2 · Pr

[
Γ∗д = ϒ

��� λ = x ,Y = y,G ′
]
,

(6)

which would lead to

Pr

[
Γ∗д ∈ SΓ

��� (λ,Y) ∈ S′
λ ,G

]
≤ eϵ2 ·Pr

[
Γ∗д ∈ SΓ

��� (λ,Y) ∈ S′
λ ,G

′
]
.

This, when combined with Eq.(3), (4), and (5), shows that our two-

phase approach ensures (ϵ,δ)-DDP.
Let Γд = {γд(vi)} and Γ′д = {γ ′д(vi)} be the subgraph counts

on G and G ′
respectively. Since Phase 2 generates Γ∗д by injecting

Laplace noise Lap(λ) into each subgraph count, we have

Pr

[
Γ∗д = ϒ

��� λ = x ,Y = y,G
]

Pr

[
Γ∗д = ϒ

��� λ = x ,Y = y,G ′
]

=

1

2x exp

(
− 1

x
∑n
i=1

���γ ∗д (vi) − γд(vi)���)
1

2x exp

(
− 1

x
∑n
i=1

���γ ∗д (vi) − γ ′д(vi)���)
≤ exp

(
1

x

n∑
i=1

���γд(vi) − γ ′д(vi)���) ≤ exp

(
1

x
LSG (Γд)

)
≤ eϵ2 ,

where the last inequality is due to x ≥ LSG (Γд). Therefore, Eq. (6)
is proved. Thus, we arrive at the following theorem:

Theorem 3.5. The proposed two-phase framework ensures (ϵ,δ)-
DDP whenever ϵ1 + ϵ2 ≤ ϵ and δ1 + δ2 ≤ δ .

4 COUNTING DIFFERENT TYPES OF
SUBGRAPHS UNDER DDP

In this section, we instantiate the proposed multi-phase frame-

work for subgraph counting under DDP on three types of common

subgraphs: triangles, three-hop paths and k-cliques. These instan-
tiations are themselves non-trivial, and involve subgraph-specific

optimizations necessary to achieve high result accuracy.

4.1 Triangles
First-cut solution. According to Section 3.2, to achieve (ϵ,δ)-DDP
in triangle counting, we need to design an (ϵ1,δ1)-DDP algorithm

that returns a noise scale λ which satisfies ϵ2 · λ ≥ LSG (Γ△) with at

least 1−δ2 probability. Equivalently, we can compute a differentially

private upper bound τ of LSG (Γ△), and then set λ = ϵ2 · τ . In the

case of triangle counting, our solution sets δ1 = 0 and δ2 = δ .
First of all, we introduce a method for computing a probabilistic

upper bound of any value α , when given a noisy version of α
injected with Laplace noise:

Lemma 4.1. Let x be any real value, and x∗ = x +Lap(α) for some
α > 0. Then, with 1 − δ probability,

x∗ + α · log

(
1

2δ

)
≥ x .

By Lemma 4.1, if we are to derive τ , we may first inject Laplace

noise Lap(λc) into LSG (Γ△), and then sets τ to the noisy value

plus λc · log

(
1

2δ

)
. This approach, however, only works if (i)

LSG (Γ△) + Lap(λc) can be computed in the decentralized setting,

and (ii) Lap(λc) is sufficient to ensure (ϵ1,δ1)-DDP for LSG (Γ△). In
relation to this, we first note that LSG (Γ△) equals the maximum

number of common neighbors shared by two users in G, i.e.,

LSG (Γ△) = max

vi ,vj ∈G,i,j
3 · |N (vi) ∩ N (vj)|, (7)

where N (v) denotes the set of neighbors of user v . This is because
(i) adding or removing one edge ⟨vi ,vj ⟩ only affects those triangles
that contain both vi and vj as vertices, (ii) the number of such

triangles equals |N (vi) ∩ N (vj)|, and (iii) each of these triangles is

reported by three users.

Based on Eq. (7), we may compute a probabilistic upper bound of

LSG (Γ△) in the decentralized setting as follows. First, for each user

vi , we ask her to compute the maximum number c(vi) of common

neighbors that she shares with any other user in her local view, i.e.,

c(vi) = max

vj ∈Gi∧j,i
|N (vi) ∩ N (vj)|. (8)

Note that for any nodevk < Gi , we have |N (vi)∩N (vk)| = 0. Then,

we ask vi to report a noisy version c∗(vi) of c(vi) injected with

Laplace noise Lap(λc). After that, we take

c⊤(vi) = c
∗(vi) + λc · log

(
1

2δ

)
as a probabilistic upper bound of c(vi), and we set

τ = max

vi ∈G
c⊤(vi)

as a probabilistic upper bound of LSG (Γ△).
Unfortunately, the above approach requires λc = n/ϵ1 to en-

sure that τ satisfies ϵ1-DDP. To explain, observe that adding or

removing one edge in G could change each c(vi) by 1 in the worst

case. Therefore, the sensitivity of {c(v1), . . . , c(vn)} equals n, due to
which we need λc ≥ n/ϵ1 to guarantee that {c∗(v1), . . . , c

∗(vn)} is

ϵ1-differentially private. As such, we have τ > n
ϵ1 · log

(
1

2δ

)
, which

leads to a prohibitive of noise in Phase 2 of our solution.

Optimized solution. To address the deficiency of the afore-

mentioned method, we propose to avoid directly collecting

{c(v1), . . . , c(vn)} (as it has a high sensitivity), but let each user

vi report a probabilistic upper bound d
⊤(vi) of her degree d(vi),

i.e., the number of 1-hop neighbors of vi . The rationale is that

d(vi) ≥ c(vi) holds for anyvi , and hence, we can use a probabilistic

upper bound of d(vi) in place of c(vi).
In particular, for some λd ,δd that we clarify shortly, we ask each

user vi to inject Laplace noise Lap(λd) into her degree d(vi), and
then report the noisy degree d∗(vi); after that, we take

d⊤(vi) = d
∗(vi) + λd · log

(
1

2δd

)
(9)

as a probabilistic upper bound of d(vi). We can then set τ =
maxvi ∈G d⊤(vi) as a probabilistic upper bound of LSG (Γ△).

The advantage of this approach is that only a small amount of

noise is needed in {d∗(v1), . . . ,d
∗(vi)}. In particular, since adding

or removing an edge inG only changes the degrees of two nodes,

each by 1, the sensitivity of D = {d(v1), . . . ,d(vi)} equals 2. Hence,
injecting Laplace noise Lap(2/ϵ) into Dд achieves ϵ-DDP. The dis-
advantage, however, is that d(vi) could be a rather loose upper

bound of c(vi), due to which setting τ = maxvi ∈G d⊤(vi) could
still lead to excessive noise in Phase 2. This motivates us to develop

a hybrid approach that combines both c⊤(vi) and d
⊤(vi).

In the proposed hybrid approach, different nodes report different
information to the analyst, i.e.,Mi varies depending onvi . The main

idea is as follows. First, we obtain a probabilistic degree upper bound

d⊤(vi) for every user vi , and we identify the set S of nodes whose

Algorithm 1: Optimized Two-Phase Approach

Input :Privacy budget for phase 1 ϵ1, privacy budget for phase 2 ϵ2,
invalidation probability δ , a large number h′;

Output :Scale λ;
1 λd = 2

0.5ϵ1
; // Server

2 δ ′ = δ
2h′+2 ; // Server

3 for each vi do
4 d⊤(vi) = d (vi) + Lap(λd) + λd · log

(
1

2δ ′

)
; // Client

5 Report d⊤(vi) to server; // Client

6 Sort {vi } into {v[1], v[2], . . . , v[n] } by d⊤(vi) in descending order;

// Server

7 for i = 1 to h′ do // Server

8 if i
0.5ϵ1

· log

(
1

2δ ′

)
≥ d⊤(v[i+2]) then // Server

9 break; // Server

10 h = ⌈i/2⌉; // Server

11 S = {v[i] |2 ≤ i ≤ h + 1}; // Server

12 λc = h
0.5ϵ1

; // Server

13 for each vi ∈ S do
14 c⊤(vi) = c(vi) + Lap(λc) + λc · log

(
1

2δ ′

)
// Client

15 c†(vi) = min{c⊤(vi), d⊤(vi)} // Client

16 Report c†(vi) to server; // Client

17 λ = 3max{ 1

ϵ2
d⊤(v[h′+2]), 1

ϵ2
maxvi ∈S c

†(vi)}; // Server

18 return λ // Server

degree upper bounds are the largest. Intuitively, for any v ∈ S ,
using d⊤(v) as an upper bound of c(v) is likely to be ineffective,

since c(v) could be much smaller than d⊤(v). Therefore, for each
v ∈ S , we derive c⊤(v) as an alternative upper bound of c(v), instead
of relying solely on d⊤(v). Note that in this case, the amount of

Laplace noise injected into c⊤(v) is O(|S |) instead of O(n), since
we do not only request c⊤(v) for any v < S . Finally, we combine

d⊤(v1), . . . ,d
⊤(vn) and c⊤(v) (v ∈ S) to compute an improved

upper bound of LSG (Γ△). We will explain later how to select the

set of nodes S used in this step later

Algorithm 1 shows the pseudo-code of the proposed solution for

Phase 1 of the framework. The algorithm involves two rounds of

reporting; all nodes participate in the first round, and only a selected

few participate in the second round. Specifically, the algorithm

starts by splitting budget λd and δ ′ in Lines 1-2. This is done by

the server. Here we divide the budget ϵ1 into two halves for the

two-round reporting. We also divide the probability δ into 2h′ + 2
parts, where h′ is a user-specified number indicating the maximum

number of clients to do the second round of reporting. The specific

value of h′ slightly affects the accuracy of the estimation result, but

not the correctness of the algorithm. In our experiments, we found

that h′ = 100 usually leads to good results.

After that, the server sends these parameters to all the clients, i.e.,

nodes in the social network. Lines 4-5 are executed by each client,

which calculate the probabilistic upper bound of the actual degree

d(vi) and report it to the server, i.e., the data collector. Then, in

Lines 6-11, the server uses a heuristic to decide h ≤ h′, the number

of clients who do the second-round reporting, and obtains the set S
of h nodes. The intuition of the heuristic will be explained shortly.

In Line 12, the server spends another half of ϵ in the second-

round reporting. After getting λc , as shown in Lines 14-16, all the

clients in S calculate c⊤(vi) as their probabilistic upper bound of

common neighbor counts, then get their final upper bound c†(vi)
in Line 15 and report it to the server.

Finally, in Lines 17-18, the server computes the final upper bound

of each client, and selects the maximum one. However, it is possi-

ble that the client vi with maximum c(vi) is not in S , and hence,

maxvi ∈S c
†(vi) is unable to cover the sensitivity. In such case, the

client is hiding in {v[h′+2], . . . ,v[n]}, and it has to be covered by

d⊤(v[h′+2]). That is reason that we derive the final λ by getting the

maximum value in Line 17. Finally, since every addition/removal

of a triangle is always observed by 3 clients, we multiply the result

by 3.

Lemma 4.2. Algorithm 1 satisfies ϵ1-DDP and, with at least 1 − δ
probability, returns λ ≥ 1

ϵ2 LSG (Γ△).

As mentioned above, Lines 6-10 in Algorithm 1 are a heuristic

to choose h, the size of the set of nodes S who report further their

c⊤ to deduce a final upper bound λ. Clearly, if h is too small, the

final upper bound would be close to the second largest d⊤, which
is likely to be much larger than the maximum c(v) among all nodes.

If h is too large, each node v in S would end up adding too much

noise to c(v), again resulting in a much larger final upper bound.

To find an appropriate h, we have the following intuition. Suppose

that h = i . Observe that for each node v in S , besides the Laplace

noise, it also needs to add an additional noise
i

0.5ϵ1 · loд
(

1

2δ ′

)
to

c(v). If this noise is already bigger than d⊤(v[h+2]), then any bigger

i would not result in smaller final upper bounds. Meanwhile, since

c⊤(v) also includes c(v), the i we have now is likely to be more than

enough to ensure c⊤(v) > d⊤. Therefore, we set h = i
2
to derive

the final upper bound. In Section 5, we experimentally evaluate the

quality of this heuristic in choosing h.

4.2 Three-Hop Paths
Baseline: Pessimistic Laplace mechanism. A three-hop path

refers to a set of three edges that form a simple path. Suppose that

we let each user vi report the number γ⊔(vi) of three-hop paths

in which she is one of the two nodes in the middle (referred to

as the internal nodes). In that case, the Pessimistic Laplace mech-

anism (explained in Section 3.1) lets each vi inject Laplace noise
Lap (6(n − 2)(n − 3)/ϵ) into γ⊔(vi) before reporting it. To explain,

observe that for any two nodes u and v , there can be at most

6(n − 2)(n − 3) three-hop paths in which ⟨u,v⟩ is one of the edges.
Accordingly, the sensitivity of Γ⊔ = {γ⊔(v1), . . . ,γ⊔(vn)} equals
6(n − 2)(n − 3), since (i) adding or removing an edge ⟨u,v⟩ in G af-

fects at most 3(n− 2)(n− 3) three-hop paths, and (ii) each three-hop

path is reported by two users.

Two-phase solution. Next we apply the proposed two-phase

framework, for which the key is to develop an (ϵ1,δ)-differentially
private algorithm for computing a probabilistic upper bound of

LSG (Γ⊔). Observe that

LSG (Γ⊔) ≤ max

vi ,vj ∈G,i,j
2

(
d (vi) · d

(
vj

)
+

∑
vℓ ∈N (vi)

(d (vℓ) − 1)

+
∑

vℓ ∈N (vj)

(d (vℓ) − 1)

)
, (10)

Phase 1: Derive d⊤(vi) with Lap

(
2

ϵ1a

)
andψ⊤(vi) with Lap

(
8(n−2)
ϵ1b

)
Phase 2: Derive Γ⊔ based on d⊤(vi) andψ

⊤(vi)

Phase 1:

Sub-Phase 1: Derive d⊤(vi) with Lap

(
2

ϵ1a

)
Sub-Phase 2: Deriveψ⊤(vi) based on Lap

(
4

(
d⊤
(1)
+d⊤

(2)

)
ϵ
1b

)
Phase 2: Derive Γ⊔ based on d⊤(vi) andψ

⊤(vi)

(a) Two-phase solution. (b) Proposed three-phase solution.

Figure 3: Comparison of two-phase and three-phase solutions for counting three-hop paths under DDP.

where d(v) denotes the degree of v and N (v) denotes the set of

neighbors of v . This is because there can be (i) at most d(vi) · d(vj)
three-hop paths in which vi and vj are the two internal nodes, (ii)

at most

∑
vℓ ∈N (vi) (d (vℓ) − 1) +

∑
vℓ ∈N (vj) (d (vℓ) − 1) three-hop

paths in which ⟨vi ,vj ⟩ is an edge and eithervi orvj is an end point.

Let ψ (vi) =
∑
vℓ ∈N (vi) 2 (d (vℓ) − 1) and Ψ = {ψ (v1), . . . ,ψ (vn)}.

By Eq. (10), if we can derive probabilistic upper bounds d⊤(vi)
and ψ⊤(vi) for d(vi) and ψ (vi), respectively, then we can use

maxvi ,vj ∈G,i,j
(
2d⊤(vi) · d

⊤(vj) +ψ
⊤(vi) +ψ

⊤(vj)
)
as an upper

bound of LSG (Γ⊔).
Note that d⊤(vi) can be computed based on Eq. (9). To derive

ψ⊤(vi), we may utilize Lemma 4.1 as follows. First, we let each user

vi inject Laplace noise Lap
(
λψ

)
intoψ (vi), to obtain a noisy value

ψ ∗(vi), and then setting

ψ⊤(vi) = ψ
∗(vi) + λψ · log

(
1

2δψ

)
, (11)

for some δψ . This approach, however, offers inferior accuracy, as it
requires λψ ≥ 8(n − 2)/ϵ to achieve ϵ-DDP, because the sensitivity
of Ψ equals 8(n−2). To understand this, observe that when all nodes
in G are connected to each other, we haveψ (vi) = 2(n − 1)(n − 2)

for every user vi . If we remove the edge ⟨v1,v2⟩, then we have

ψ (v1) = ψ (v2) = 2(n − 2)2, andψ (vj) = 2(n − 1)(n − 2) − 4 for j ≥ 3.

This worst-case scenario leads to a total change of 8(n − 2) in Ψ,
which explains the sensitivity of Ψ.

Proposed three-phase solution. Next we present the proposed
solution, which recursively applies the two-phase framework to

the estimation of Ψ. Observe that although Ψ has a large sensitivity,

its local sensitivity LSG (Ψ) can be much smaller:

LSG (Ψ) ≤ max

vi ,vj ∈G∧i,j
4

(
d(vi) + d(vj)

)
. (12)

In particular, when one edge ⟨vi ,vj ⟩ is added or removed in G,
(i) ψ (vi) changes by at most 2d(vj), (ii) ψ (vj) changes by at most

2d(vi), and (iii) {ψℓ | ℓ , i, j} changes by at most 2d(vi) + 2d(vj).
The fact that LSG (Ψ) is relatively small motivates the recurisve

application of the two-phase framework on the estimation of Ψ, i.e.,
we first compute a probabilistic upper bound of LSG (Ψ), and then

inject noise into Ψ accordingly. After that, we derive a probabilistic

upper boundψ⊤(vi) for each user vi , and ask them to report their

square counts injected with Laplace noise Lap

(
maxvi ∈Gψ

⊤(vi)
ϵ2

)
.

Figure 3 illustrates the differences between the proposed three-

phase solution and the aforementioned two-phase solution, which

suffers from the large sensitivity of Ψ.
We now explain how we derive a probabilistic upper bound

ψ⊤(vi) of eachψ (vi). First, we compute a probabilistic degree upper

bound d⊤(vi) for each vi , based on Eq. (9). Let d⊤
(1)

and d⊤
(2)

be

Algorithm 2: Optimized Three-Phase Approach

Input :Privacy budget for phase 1 ϵ1, privacy budget for phase 2 ϵ2,
invalidation probability δ , a large number h′

1 λd = 2

0.5ϵ1
; // Server

2 δ1 = δ ; // Server

3 for each vi do
4 d⊤(vi) = d (vi) + Lap(λd) + λd · log

(
1

2δ1

)
; // Client

5 Report d⊤(vi) to server; // Client

6 Sort {vi } into {v[1], v[2], . . . , v[n] } by d⊤(vi) in descending order;

// Server

7 λψ =
4

(
d⊤(v[1])+d

⊤(v[2])
)

0.5ϵ1
; // Server

8 δ2 = δ ; // Server

9 for each vi do
10 ψ⊤(vi) = ψ (vi) + Lap(λψ) + λψ · log

(
1

2δ2

)
; // Client

11 Report ψ⊤(vi) to server; // Client

12 λ = 1

ϵ2
maxvi ∈G ψ

⊤(vi); // Server

13 return λ // Server

the largest two degree upper bounds. By Eq. (12), we can take

4

(
d⊤
(1)
+ d⊤

(2)

)
as a probabilistic upper bound of LSG (Ψ). After that,

we let each user vi inject Lapalce noise Lap(λψ) into ψ (vi), with

λψ = 4

(
d⊤
(1)
+ d⊤

(2)

)
/ϵ1, and then report the noisy value ψ ∗(vi).

Then, we derive an upper bound ψ⊤(vi) of each ψ (vi) based on

Eq. (11). Finally, we compute maxvi ∈G ψ
⊤(vi) as a probabilistic

upper bound of LSG (Γ⊔).
Algorithm 2 shows the pseudo-code of the above method for

computing λ. The following lemma establishes the privacy guaran-

tee of the algorithm.

Lemma 4.3. Algorithm 2 satisfies (ϵ1,δ1)-DDP and, with 1 − δ2
probability, returns λ ≥ 1

ϵ2 LSG (Γ⊔).

4.3 k-Cliques
Pessimistic Laplace mechanism. A k-clique refers to a set of

k nodes that are fully connected to each other. Let γkC(vi) be
the number of k-cliques that user vi appears in, and ΓkC =
{γkC(v1), . . . ,γkC(vn)}. To obtain ΓkC with ϵ-DDP, our based solu-
tion, namely Pessimistic Laplace mechanism, lets each uservi inject

Laplace noise Lap
(
k
(n−2
k−2

)
/ϵ

)
into γkC(vi), since the sensitivity of

ΓkC equals k
(n−2
k−2

)
. This is because (i) adding or removing one edge

e in G affects only those k-cliques where e is an edge, (ii) there are

at most

(n−2
k−2

)
such k-cliques, and (iii) each k-clique is reported by

k users.

Dataset Num. of nodes Num. of edges Avg. deg. Num. of triangles Num. of three-hop paths Num. of 4-cliques

Facebook 4,039 88,234 43.69 1,612,010 1,055,326,189 30,004,668

HepPh 12,008 118,489 19.73 3,358,499 3,146,167,903 150,281,372

AstroPh 18,771 198,050 21.10 1,351,441 986,743,120 9,580,415

Table 1: Dataset Properties

Proposed solution. Next we apply the proposed two-phase frame-

work to obtain a more accurate estimate of the k-clique count. For
this purpose, we present an ϵ1-differentially private algorithm for

computing a probabilistic upper bound of LSG (ΓkC). First, we have

LSG (ΓkC) = max

vi ,vj ∈G,i,j
k · C

(
Gi∩j ,k − 2

)
, (13)

where Gi∩j denotes the subgraph of G induced the common neigh-

bors ofvi andvj , and C
(
Gi∩j ,k − 2

)
denotes the number of (k − 2)-

cliques in Gi∩j . To explain, observe that if an k-clique is affected
by the presence or absence of an edge ⟨vi ,vj ⟩, then (i) the k-clique
must contain both vi and vj , and (ii) apart from vi and vj , the
remaining k − 2 nodes in the clique must form a (k − 2)-clique.

There exist only C
(
Gi∩j ,k − 2

)
such k-cliques, and each of them

is reported by k users. Therefore, Eq. (13) holds.

Let z(vi) = maxvj ∈G,i,j kC
(
Gi∩j ,k − 2

)
. By Eq. (13), if we can

derive a probabilistic upper bound z⊤(vi) of each z(vi), thenwemay

usemaxvi ∈G z⊤(vi) as an upper bound of LSG (ΓkC). By Lemma 4.1,

we can compute z⊤(vi) as

z⊤(vi) = z∗(vi) + λz · log

(
1

2δz

)
,

where λz and δz are constants and z∗(vi) is obtained by injecting

Laplace noise Lap(λz) into z(vi). To ensure ϵ-DDP, however, we

need λz ≥ kn
((n−2
k−2

)
−

(n−3
k−2

))
/ϵ , since adding or removing one

edge in G may change each z(vi) by up to k
((n−2
k−2

)
−

(n−3
k−2

))
. This

leads to an enormous amount of noise in z⊤(vi).
To address the above issue, we recursively apply our two-phase

framework to derive an alternative upper bound of LSG (ΓkC), in
a manner similar to the method illustrated in Figure 3b. First, let

c(vi) be as defined in Eq. (8). Then, we have

LSG (ΓkC) = max

vi ,vj ∈G,i,j
k · C

(
Gi∩j ,k − 2

)
≤ max

vi ∈G
k

(
c(vi)

k − 2

)
.

Therefore, if we are able to derive an upper bound maxvi ∈G c⊤(vi)

of maxvi ∈G c(vi), then we can use

(
maxvi ∈G c⊤(vi)

k−2

)
as an up-

per bound of LSG (ΓkC). We compute such an upper bound

maxvi ∈G c⊤(vi) using the same method described in Section 4.1.

That is, we compute c⊤(v) for a selected set S of users v , as well
as a probability degree upper bound d⊤(vj) for each user vj . After
that, we combine d⊤(v1), . . . ,d

⊤(vn) and c
⊤(v) (v ∈ S) to derive

an upper bound of maxvi ∈G c(vi).
For brevity, we omit the pseudo-code as it can be easily con-

structed from the λ△ returned by Algorithm 1. That is, after getting

λ△ from Algorithm 1, let

λkC = k

(ϵ2
3
λ△

k − 2

)
/ϵ2. (14)

Since we have

ϵ2
3

λ△ = max{d⊤(v[h′+2]),max

vi ∈S
c†(vi) ≥ max

vi ∈G
c(vi),

with probability 1 − δ , and λ△ satisfies ϵ1-DDP. So λkC satisfies

ϵ1-DDP and we have LSG (ΓkC) ≤ k
(ϵ2

3
λ△

k−2

)
with probability 1 − δ .

5 EXPERIMENTS
Datasets. We conduct experiments on three real world datasets

from Stanford Large Network Dataset Collection [26]. The Facebook
dataset contains “friends list” from Facebook, a large social network.

It was collected from surveying participants using the Facebook

app. The HepPh dataset and AstroPh dataset are the co-authorship
networks from arXiv, which contains the collaborations between

authors who submit their papers to High Energy Physics and Astro

Physics, respectively. Table 1 shows the properties of the datasets

and their true subgraph pattern counts.

Parameter selection. Since our solutions follow the proposed

multi-phase framework, we need to split (ϵ,δ) budget among differ-

ent phases. Recall from Section 3 that in the two-phase framework,

Phase 1 estimates an upper bound of the required noise scale, and

Phase 2 reports noisy counts. In order to get more accurate counting

results, we assign more privacy budget to Phase 2. Specifically, we

set ϵ1 = 0.1ϵ and ϵ2 = 0.9ϵ for Phase 1 and Phase 2, respectively.

Regarding the other privacy parameter δ , following the popular

guideline in [12], we set δ to
1

n , where n is the number of nodes

in the social network. Inside the proposed solutions described in

Section 3, δ is sub-divided, e.g., by the number of entities to be

protected for triangle counting.

Baselines. We compare the fully optimized versions of proposed

solutions for private subgraph counting, denoted by Mo in the

following, against the following baselines: (i) the (ϵ , δ)-DDP ver-

sion of the baseline method, i.e., Pessimistic Laplace mechanism,

described in Section 3, (ii) first-cut versions of the proposed solu-

tions, denoted asMc in the following, and (ii) LDPGen [32], which

generates synthetic graphs under LDP. The counts of differential

private subgraph patterns are computed directly from the synthetic

graph. Note that in LDPGen, the data collector only gathers in-

formation from the nodes on their direct connections; that is, no

ELV is involved in this method, in which case DDP (Definition

2.6) reduces to LDP (Definition 2.4). Besides, we have also run ex-

periments using the Pessimistic Gaussian mechanism, described

towards the end of Section 3.1, which injects Gaussian noise into

the true counts [1] instead of Laplace noise. From our experiments,

we found that Pessimistic Gaussian consistently outputs much nois-

ier results compared to the Pessimistic Laplace mechanism under

(ϵ , δ)-DDP. We thus omit the results for Pessimistic Gaussian for

brevity. Similarly, we omit Pessimistic Laplace under the stricter

ϵ-DDP requirement, which is always worse than the more relaxed

(ϵ , δ)-DDP version.

Noise scale selection. Before presenting our main evaluation re-

sults, we first demonstrate the effectiveness of the heuristic in

Section 4.1 for determining the value of h in Phase 1, which is the

ϵ1 = 0.1 ϵ1 = 0.3 ϵ1 = 0.5

0 5 10 15 20 25 30

1,000

2,000

3,000

4,000

h

U
p
p
e
r
b
o
u
n
d
o
f
L
S G

(Γ
△
)

0 5 10 15 20 25 30
1,000

1,500

2,000

2,500

3,000

h

U
p
p
e
r
b
o
u
n
d
o
f
L
S G

(Γ
△
)

0 5 10 15 20 25 30
1,000

1,500

2,000

2,500

3,000

h

U
p
p
e
r
b
o
u
n
d
o
f
L
S G

(Γ
△
)

(a) Facebook dataset (b) HepPh dataset (c) AstroPh dataset

Figure 4: Selection of h for triangle counting

First-cut two-phase Optimized two-phase Pessimistic Laplace LDPGen

1 2 3 4 5 6 7 8 9 10

10
−2

10
−1

Privacy budget ϵ

M
R
E

1 2 3 4 5 6 7 8 9 10

10
−2

10
−1

Privacy budget ϵ

M
R
E

1 2 3 4 5 6 7 8 9 10

10
−2

10
−1

10
0

Privacy budget ϵ

M
R
E

(a) Facebook dataset (b) HepPh dataset (c) AstroPh dataset

Figure 5: Triangle Counting

number of nodes participating in the second data collection step in

the proposed improved solution. Figure 4 depicts the upper bound

of LSG (Γ△), i.e., ϵ1λ from Phase 1 as a function of h. For each of

the datasets, for better presentation, the figure only shows three

curves for three values of ϵ1 = {0.1, 0.3, 0.5}, corresponding to the

total budget ϵ = {1, 3, 5}. The valleys represent the optimal value

of h, i.e., with the lowest ϵ1λ, while the vertical lines represent

the heuristic value of h as computed in Lines 7-10 in Algorithm 1.

The figure confirms that the heuristic values of h are close to the

optimal ones. For example, on the Facebook dataset, the optimal

and heuristic values are exactly the same for ϵ1 = 0.1 and ϵ1 = 0.3,

while in the case of ϵ1 = 0.5, the heuristic deviates by 1 from the

optimal value, which results in only 6% increase of the upper bound

compared to its optimal value. The figure also shows that the noise

scale varies across the datasets, with Facebook being the lowest

(e.g., ϵ1λ = 1443 for ϵ1 = 0.3) and HepPh being the highest (e.g.,

ϵ1λ = 1749 for ϵ1 = 0.3). This is simply because the local sensitiv-

ity depends on the dataset properties, i.e., number of nodes, node

degrees, node degree distribution.

Evaluation metric. We evaluate the accuracy of our approach

in counting subgraph patterns (triangle, 3-hop path, and k-clique)
on all the aforementioned datasets and compare it with that of

the baselines. The accuracy of each method (M) on graph (G) is
measured by the mean relative error (MRE), that is,MRE(M,G) =
|M(G) − f (G)|/f (G), where M(G) is the differential private sub-
graph pattern count in input graphG , and f (G) is the true subgraph
count inG . Each result reported is averaged over 300 repeated runs.

Triangle counts. The MRE of triangle counts of all the methods

on all the datasets are depicted on Figure 5 while the privacy bud-

get (ϵ) varies from 1 to 10. The results show that our optimized

approach achieves good accuracy over all datasets. The proposed so-

lution Mo (△) clearly outperforms all the other differential private

methods in terms of result accuracy. Note that the difference is sig-

nificant sinceMRE is plotted in log-scale. In the Facebook dataset,

for example, when privacy budget is relatively large, e.g., ϵ = 5, its

MRE always stays below or close to 0.49%. When ϵ decreases, the
accuracy drops but it is still smaller than 3.8% even when ϵ = 1.

The result of the first-cut solution Mc (△) is close to Mo (△) in the

case of HepPh and AstroPh datasets, with Mo (△) strictly better.

However, Mo (△) significantly enhances the accuracy compared to

Mc (△) for the Facebook dataset.

3-hop counts. Figure 6 shows the results for the 3-hop counts.

Again, the figure shows that our improved approach achieves good

accuracy over all datasets.Mo (⊔) clearly outperforms all the other

differential private methods including Mc (⊔), simply because it

injects less noise into the true results. The general trend in the

results of 3-hop counts is the same as that of triangle counts across

datasets and differential private approaches. However, we first note

that, even though the number of 3-hop counts is larger than that

of triangles, triangle counts are more accurate than those of 3-hop

counts. This is because the local sensitivity of triangle counts is

much smaller than that of 3-hop counts. Second, we note that the

difference betweenMo (⊔) andMc (⊔) is bigger than the difference

betweenMo (△) andMc (△). This is becauseMo (⊔) uses a much

tighter bound for the noise scale compared to Mc (⊔), while the

noise scale in Mo (△) is not as much tight compared to Mc (△).

First cut two-Phase Optimized three-phase Pessimistic Laplace LDPGen

1 2 3 4 5 6 7 8 9 10

10
−3

10
−2

10
−1

10
0

Privacy budget ϵ

M
R
E

1 2 3 4 5 6 7 8 9 10

10
−3

10
−2

10
−1

10
0

10
1

Privacy budget ϵ

M
R
E

1 2 3 4 5 6 7 8 9 10

10
−2

10
−1

10
0

10
1

10
2

Privacy budget ϵ

M
R
E

(a) Facebook dataset (b) HepPh dataset (c) AstroPh dataset

Figure 6: 3-hop-path Counting

First cut two-Phase Optimized two-phase Pessimistic Laplace LDPGen

1 2 3 4 5 6 7 8 9 10

10
−1

10
0

10
1

Privacy budget ϵ

M
R
E

1 2 3 4 5 6 7 8 9 10

10
−2

10
−1

10
0

10
1

10
2

Privacy budget ϵ

M
R
E

1 2 3 4 5 6 7 8 9 10

10
−1

10
0

10
1

10
2

10
3

Privacy budget ϵ

M
R
E

(a) Facebook dataset (b) HepPh dataset (c) AstroPh dataset

Figure 7: 4-Clique Counting

Finally, we note that the drop in MRE as ϵ increases is faster in

the case of 3-hop counts compared to triangle counts for both Mo
and Mc . For example, in the Facebook dataset, theMRE of Mo (⊔)

drops from 14.7% when ϵ = 1 to 0.44% when ϵ = 5.

4-clique counts. Figure 7 shows the results for the 4-clique counts.
k-clique counting for a larger k > 4 would be expensive to evalu-

ate due to the high time complexity of counting such cliques. Our

proposed approach Mo (4C) once again achieves good accuracy

over all datasets, and consistently outperforms its competitors. The

general trend in the results of 4-clique counts is the same as that of

triangle counts across datasets and differential private approaches.

However, triangle counts are much more accurate than 4-clique

counts due to the larger scale of 4-cliques in Eq. (14) compared to tri-

angles. We also note that LDPGen is strictly better than Pessimistic
Laplace for all privacy budgets on all the datasets.

6 RELATEDWORK
Differential privacy [11] has attracted widespread attention from

both academia and industry in the last decade. There are two exist-

ing models of differential privacy: centralized differential privacy

(CDP) and local differential privacy (LDP). In CDP, data from indi-

viduals are collected and maintained by a trusted centralized data

curator. The trusted curator executes a DP mechanism on the sen-

sitive data and releases outputs, e.g., to untrusted data analysts.

In LDP, there is no trusted centralized data curator. Rather, each

individual perturbs its own data using a (local) differentially private

algorithm. The data analyst collects these perturbed data, and uses

it to infer aggregate statistics of the datasets. In a broader sense,

this work falls into the category of differential privacy in the lo-

cal setting [10], and our privacy definition (i.e., DDP) generalizes

existing LDP definitions by considering extended local views.

Graph analysis with CDP. Graph analysis under the CDP setting

has been studied intensively in the literature. Two different CDP

models were defined for graph analysis: edge differential privacy
and node differential privacy. Edge differential privacy considers

two graphs as neighbors if they differ in one edge, while node

differential privacy considers two graphs as neighbors if one can be

obtained from the other by deleting a node and its adjacent edges.

Edge differentially private algorithms have focused on releasing

various types of graph statistics, including degree distributions

[19, 22, 28], cuts [3, 17, 18], degree sequences [19, 22], k-stars and k-
triangles [29], and subgraph counts [4, 21, 34, 42]. Triangle counting

queries can be answered with edge differential privacy by efficiently

computing the smooth sensitivity [30], empirical sensitivity [6],

and ladder functions [42].

Earlier works on graph analysis under node differential privacy

include [4, 6, 24]. Gehrke et al. [16] defined a generalization of

differential privacy, called zero-knowledge privacy, that enforces

node differentially privacy for bounded-degree graphs. [5, 33] fo-

cus on high-dimension graph data release with node differential

privacy. Day et al. [8] investigated graph data publishing under

node-differential privacy. Continuous release of graph statistics

(e.g., degree distributions and subgraph counts) with node differ-

ential privacy has been initiated in [36]. All these CDP solution

(for both edge and node differential privacy) require that the data

publisher has the full knowledge of the whole input graph. There-

fore, they are not applicable to our setting, where the social graph

is decentralized and no party knows the full graph.

Graph analysis with LDP. The LDP notion [23] assumes there is

no trusted centralized data curator. Randomized response [41] is

one of the simplest LDP techniques. However, directly applying

the randomized response method on the local graph information

(e.g., neighbor lists) collected from individual users may ruin the

property (e.g., sparsity) of the original graph [32]. Gao et al. [15]

transform the local graphs into neighbor lists and apply the hierar-

chical random graph (HRG) approach to add noise on the neighbor

lists. Qin et al. [32] design LDPGen, a multi-phase technique that

generates representative synthetic decentralized social graphs with

local differential privacy. The synthetic graphs can be used for vari-

ous graph analysis, such as graph modularity, clustering coefficient

and assortativity coefficient. To our best knowledge, ours is the

first work that considers subgraph counts in decentralized social

networks with differential privacy guarantees, and the first to con-

sider the case where each node possesses an extended local view

with information beyond direct connections.

LDP for other types of data analysis. Finally, beyond social

graph analysis, LDP algorithms for a variety of tasks have been

widely investigated recently. Examples include frequency estima-

tion [13, 39], heavy hitters [2, 14, 31], frequent itemsets [40], and

marginal tables [7, 43]. The LDP model has been applied to the col-

lection of various data types, including location [9] and positioning

data [25], responses from crowdsourcing workers [27, 35, 37], and

user data on mobile devices [38].

7 CONCLUSION
Given that more and more data are generated in the context of so-

cial networks and the well-spread concern of privacy, the problem

of decentralized social network analysis would become increasingly

important and relevant in practice. Our work is the one of first ef-

forts toward develop privacy-preserving techniques to address the

problem. With the proposed concept of decentralized differential

privacy, our framework could be extended in multiple directions.

For one, diverse local view models could be further considered. For

example, in some social networks, though one cannot see all his two

hop neighbors, the connections between her one-hop neighbors

would be visible. How to accurately estimate relevant graph prop-

erties with such local views under DDP would be interesting future

work. Another important direction is to integrate our framework

with specific social network applications and carry out more so-

phisticated graph analysis tasks (e.g., community discovery, social

graph recommendation).

ACKNOWLEDGMENTS
This publication was made possible by NPRP grant NPRP10-0208-

170408 from the Qatar National Research Fund (a member of Qatar

Foundation), and by the National Science Foundation (NSF), USA

under grant No. 1350324. The findings herein reflect the work, and

are solely the responsibility, of the authors. This work was also

supported by the National Research Foundation, Prime Minister's

Office, Singapore under its Strategic Capability, and by the Research

Centres Funding Initiative, Provincial Key Research and Develop-

ment Program of Zhejiang (Grant No. 2019C03133) and Major Sci-

entific Research Project of Zhejiang Lab (Grant No. 2018FD0ZX01).

REFERENCES
[1] Borja Balle and Yu-Xiang Wang. 2018. Improving the Gaussian Mechanism for

Differential Privacy: Analytical Calibration and Optimal Denoising. In Interna-
tional Conference on Machine Learning. 403–412.

[2] Raef Bassily and Adam Smith. 2015. Local, private, efficient protocols for succinct

histograms. In Proceedings of the forty-seventh annual ACM symposium on Theory
of computing. 127–135.

[3] Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. 2012. The johnson-

lindenstrauss transform itself preserves differential privacy. In 2012 IEEE 53rd
Annual Symposium on Foundations of Computer Science. 410–419.

[4] Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. 2013. Differentially

private data analysis of social networks via restricted sensitivity. In Proceedings
of the 4th conference on Innovations in Theoretical Computer Science. 87–96.

[5] Christian Borgs, Jennifer Chayes, and Adam Smith. 2015. Private graphon esti-

mation for sparse graphs. In Advances in Neural Information Processing Systems.
1369–1377.

[6] Shixi Chen and Shuigeng Zhou. 2013. Recursive mechanism: towards node

differential privacy and unrestricted joins. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data. 653–664.

[7] Graham Cormode, Tejas Kulkarni, and Divesh Srivastava. 2018. Marginal release

under local differential privacy. In Proceedings of the 2018 International Conference
on Management of Data. 131–146.

[8] Wei-Yen Day, Ninghui Li, andMin Lyu. 2016. Publishing graph degree distribution

with node differential privacy. In Proceedings of the 2016 International Conference
on Management of Data. 123–138.

[9] Rinku Dewri. 2013. Local differential perturbations: Location privacy under

approximate knowledge attackers. IEEE Transactions on Mobile Computing 12, 12

(2013), 2360–2372.

[10] John C. Duchi, Michael I. Jordan, and Martin J. Wainwright. 2013. Local Privacy

and Statistical Minimax Rates. In 54th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA. 429–438.
https://doi.org/10.1109/FOCS.2013.53

[11] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-

brating noise to sensitivity in private data analysis. In Theory of cryptography
conference. Springer, 265–284.

[12] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Differen-

tial Privacy. Found. Trends Theor. Comput. Sci. 9, 3–4 (Aug. 2014), 211–407.
https://doi.org/10.1561/0400000042

[13] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. Rappor: Random-

ized aggregatable privacy-preserving ordinal response. In Proceedings of the 2014
ACM SIGSAC conference on computer and communications security. 1054–1067.

[14] Giulia Fanti, Vasyl Pihur, and Úlfar Erlingsson. 2016. Building a rappor with

the unknown: Privacy-preserving learning of associations and data dictionaries.

Proceedings on Privacy Enhancing Technologies 2016, 3 (2016), 41–61.
[15] Tianchong Gao, Feng Li, Yu Chen, and XuKai Zou. 2018. Local Differential

Privately Anonymizing Online Social Networks Under HRG-Based Model. IEEE
Transactions on Computational Social Systems 5, 4 (2018), 1009–1020.

[16] Johannes Gehrke, Edward Lui, and Rafael Pass. 2011. Towards privacy for social

networks: A zero-knowledge based definition of privacy. In Theory of Cryptogra-
phy Conference. 432–449.

[17] Anupam Gupta, Aaron Roth, and Jonathan Ullman. 2012. Iterative constructions

and private data release. In Theory of cryptography conference. 339–356.
[18] Moritz Hardt and Guy N Rothblum. 2010. A multiplicative weights mechanism

for privacy-preserving data analysis. In 2010 IEEE 51st Annual Symposium on
Foundations of Computer Science. 61–70.

[19] Michael Hay, Chao Li, Gerome Miklau, and David Jensen. 2009. Accurate es-

timation of the degree distribution of private networks. In 2009 Ninth IEEE
International Conference on Data Mining. 169–178.

[20] Michael Hay, Chao Li, Gerome Miklau, and David D. Jensen. 2009. Accurate

Estimation of the Degree Distribution of Private Networks. In ICDM 2009, The
Ninth IEEE International Conference on Data Mining, Miami, Florida, USA, 6-9
December 2009. 169–178. https://doi.org/10.1109/ICDM.2009.11

[21] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and Grigory Yaroslavtsev.

2011. Private analysis of graph structure. Proceedings of the VLDB Endowment 4,
11 (2011), 1146–1157.

[22] Vishesh Karwa and Aleksandra B Slavković. 2012. Differentially private graphical

degree sequences and synthetic graphs. In International Conference on Privacy in
Statistical Databases. 273–285.

[23] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova,

and Adam Smith. 2011. What can we learn privately? SIAM J. Comput. 40, 3
(2011), 793–826.

https://doi.org/10.1109/FOCS.2013.53
https://doi.org/10.1561/0400000042
https://doi.org/10.1109/ICDM.2009.11

[24] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam

Smith. 2013. Analyzing graphs with node differential privacy. In Theory of
Cryptography Conference. Springer, 457–476.

[25] Jong Wook Kim, Dae-Ho Kim, and Beakcheol Jang. 2018. Application of local

differential privacy to collection of indoor positioning data. IEEE Access 6 (2018),
4276–4286.

[26] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data. (June 2014).

[27] Yaliang Li, Chenglin Miao, Lu Su, Jing Gao, Qi Li, Bolin Ding, Zhan Qin, and

Kui Ren. 2018. An efficient two-layer mechanism for privacy-preserving truth

discovery. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 1705–1714.

[28] Bing-Rong Lin and Daniel Kifer. 2013. Information preservation in statistical

privacy and bayesian estimation of unattributed histograms. In Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data. 677–688.

[29] Wentian Lu and Gerome Miklau. 2014. Exponential random graph estimation

under differential privacy. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 921–930.

[30] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. 2007. Smooth sensitivity

and sampling in private data analysis. In Proceedings of the thirty-ninth annual
ACM symposium on Theory of computing. 75–84.

[31] Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao, and Kui Ren. 2016.

Heavy hitter estimation over set-valued data with local differential privacy. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. 192–203.

[32] Zhan Qin, Ting Yu, Yin Yang, Issa Khalil, Xiaokui Xiao, and Kui Ren. 2017.

Generating synthetic decentralized social graphs with local differential privacy. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 425–438.

[33] Sofya Raskhodnikova and Adam Smith. 2016. Lipschitz extensions for node-

private graph statistics and the generalized exponential mechanism. In 2016 IEEE
57th Annual Symposium on Foundations of Computer Science (FOCS). 495–504.

[34] Vibhor Rastogi, Michael Hay, Gerome Miklau, and Dan Suciu. 2009. Relation-

ship privacy: output perturbation for queries with joins. In Proceedings of the
twenty-eighth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. 107–116.

[35] Xuebin Ren, Chia-Mu Yu, Weiren Yu, Shusen Yang, Xinyu Yang, Julie A McCann,

and S Yu Philip. 2018. LoPub: High-Dimensional Crowdsourced Data Publication

With Local Differential Privacy. IEEE Transactions on Information Forensics and
Security 13, 9 (2018), 2151–2166.

[36] Shuang Song, Susan Little, SanjayMehta, Staal Vinterbo, and Kamalika Chaudhuri.

2018. Differentially Private Continual Release of Graph Statistics. arXiv preprint
arXiv:1809.02575 (2018).

[37] Haipei Sun, Boxiang Dong, Hui Wendy Wang, Ting Yu, and Zhan Qin. 2018.

Truth Inference on Sparse Crowdsourcing Data with Local Differential Privacy.

In 2018 IEEE International Conference on Big Data (Big Data). 488–497.
[38] Jun Tang, Aleksandra Korolova, Xiaolong Bai, Xueqiang Wang, and Xiaofeng

Wang. 2017. Privacy loss in Apple’s implementation of differential privacy on

MacOS 10.12. arXiv preprint arXiv:1709.02753 (2017).
[39] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. 2017. Locally

differentially private protocols for frequency estimation. In 26th USENIX Security
Symposium (USENIX) Security 17). 729–745.

[40] Tianhao Wang, Ninghui Li, and Somesh Jha. 2018. Locally differentially private

frequent itemset mining. In 2018 IEEE Symposium on Security and Privacy (SP).
127–143.

[41] Stanley LWarner. 1965. Randomized response: A survey technique for eliminating

evasive answer bias. J. Amer. Statist. Assoc. 60, 309 (1965), 63–69.
[42] Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava, and Xi-

aokui Xiao. 2015. Private release of graph statistics using ladder functions. In

Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data. 731–745.

[43] Zhikun Zhang, Tianhao Wang, Ninghui Li, Shibo He, and Jiming Chen. 2018.

Calm: Consistent adaptive local marginal for marginal release under local differ-

ential privacy. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. 212–229.

APPENDIX
Proof of Lemma 3.2

Proof. Let γ (vi)
∗
and γ ′(vi)

∗
be the noisy triangle counts of

node vi when its ELV is Gi and G ′
i , respectively, and si be any

possible subset of possible noisy triangle count at vi . Since each
node independently perturbs its local triangle count, we have:

Pr(M1(G1) ∈ S1, . . . ,Mn (Gn) ∈ Sn)

Pr(M1(G
′
1
) ∈ S1, . . . ,Mn (G

′
n) ∈ Sn)

=

∏n
i=1 Pr[γ (vi)

∗ = si]∏n
i=1 Pr[γ

′(vi)∗ = si]
=

∏n
i=1 exp

(
ϵ

∆(Γ△)
|si − γ (vi)|

)
∏n

i=1 exp
(

ϵ
∆(Γ△)

|si − γ ′(vi)|
)

=

n∏
i=1

exp

(
ϵ

∆(Γ△)

[
|si − γ (vi)| − |si − γ

′(vi)|
])

≤ exp

(
ϵ

∆(Γ△)

n∑
i=1

|γ (vi) − γ
′(vi)|

)
= exp(ϵ),

where si ∈ ranдe(Mi) is any possible output of Mi , for 1 ≤ i ≤
n. □

Proof of Lemma 3.3
Proof. For each user vi , the variance is σ

2

i = 2

(
S (Γ△)
ϵ

)
2

. Thus

the total variance is σ 2 =
∑n
i=1 σ

2

i = 2n
(
S (Γ△)
ϵ

)
2

= O
(
n3

ϵ 2

)
. □

Proof of Lemma 4.1
Proof. Without loss of generality, we assume that δ ≤ 0.5. Then,

we have:

Pr

[
x∗ + α · log

(
1

2δ

)
≥ x

]
= Pr

[
Lap (α) + α · log

(
1

2δ

)
≥ 0

]
=

∫ +∞
α ·log(2δ)

Lap (t ,α) dt = 1 −

∫ α ·log(2δ)

−∞

Lap (t ,α) dt

=1 −

(
1

2

exp

(
α · log(2δ)

α

)
− 0

)
= 1 − δ .

□

Proof of Lemma 4.2
Proof. First, we prove Algorithm 1 satisfies ϵ1-DDP. Suppose

that we have two graph G and G ′
with one edge difference. And

we have d(vi), d
⊤(vi), c(vi) and c⊤(vi) on G, and d ′(vi), d

′⊤(vi),
c ′(vi) and c

′⊤(vi) on G
′
. Note that the change of edge between G

andG ′
only results in the change of degree of maximum two clients

vx and vy by 1. Thus, for Lines 3-5 we have:∏n
i=1 Pr[d

⊤(vi) = ai |G]∏n
i=1 Pr[d

′⊤(vi) = ai |G ′]

=
Pr[d⊤(vx) = ax |G] · Pr[d

⊤(vy) = ay |G]

Pr[d ′⊤(vx) = ax |G] · Pr[d ′⊤(vy) = ay |G]

=
exp

(
|ax−d (vx)−λd ·log(2δ ′) |+ |ay−d (vy)−λd ·log(2δ ′) |

λd

)
exp

(
|ax−d ′(vx)−λd ·log(2δ ′) |+ |ay−d ′(vy)−λd ·log(2δ ′) |

λd

)
≤ exp

(
1

λd
|d(vx) − d ′(vx)| +

1

λd
|d(vy) − d ′(vy)|

)
≤ exp

(
2

λd

)
= exp

(ϵ1
2

)
.

http://snap.stanford.edu/data

For Lines 13-16, since we only let h clients to calculate c⊤(vi),
the change of {c⊤(vi)} will be at most h. Therefore, we have:∏

vi ∈S Pr[c
⊤(vi) = ai |G]∏

vi ∈S Pr[c
′⊤(vi) = ai |G ′]

=

∏
vi ∈S exp

(
1

λc
|ai − c(vi) − λc · log(2δ

′)|

)
∏
vi ∈S exp

(
1

λc
|ai − c ′(vi) − λc · log(2δ ′)|

)
≤ exp

©« 1

λc

∑
vi ∈S

|d(vi) − d ′(vi)|
ª®¬

≤ exp

(
2

λc
|S |

)
= exp

(ϵ1
2

)
.

Note that Lines 13-16 use the result from Lines 3-5, and the final

result λ uses the result from Lines 13-16. Due to the composition

rule of differential privacy, the algorithm as a whole satisfies ϵ1-
DDP.

Second, we will prove λ ≥ 1

ϵ2 LSG (Γ△)with 1−δ probability. The

first step that may fail is getting set S . In order to get a valid set S ,
we need to guarantee that all theh+2 clients {v[1],v[2], . . . ,v[h+2]}

satisfy ∀i ∈ [1,h + 2],d⊤(v[i]) ≥ d(v(i)), where v(i) is the client
who has the i-th largest actual degree.

Here, we define ξi ∈ [0, 1] as the sum of probabilities that an-

other client other than v(i) becomes v[i] and meanwhile d⊤(v[i]) ≥
d(v(i)). It is easy to infer that for any i ∈ [1,h + 2], we have:

Pr[d⊤(v[i]) ≥ d(v(i))] = Pr[d⊤(v(i)) ≥ d(v(i))] + ξi

≥ Pr[d⊤(v(i)) ≥ d(v(i))]

= 1 − δ ′.

Therefore, we have Pr[d⊤(v[i]) < d(v(i))] < δ
′
for h′ + 2 clients.

Then, for all the h clients in S , when calculating c⊤(vi), from
Eq. (4.1) there is also a probability δ ′ to fail. Since h ≤ h′, we have
h′ + 2 + h ≤ 2h′ + 2 times to fail, every time with a probability

δ ′ = δ
2h′+2

. Due to the union bound, the total probability to fail is

at most δ .
As we discussed previously,maxvi ∈Gc(vi) is covered by either

maxvi ∈G {c
⊤(vi)} or d

⊤(v[h′+2]). Combined with Eq. (7), we have:

λ = 3max

{
1

ϵ2
d⊤(v[h′+2]),

1

ϵ2
max

vi ∈S
c†(vi)

}
≥ 3 max

vi ∈G
c(vi) = LSG (Γ△)

with probability 1 − δ . □

Proof of Lemma 4.3
Proof. First, we prove that Algorithm 2 satisfies (ϵ1,δ1)-DDP.

Similar to our proof in Lemma 4.2, the procedure in Lines 3-5

satisfies
1

2
ϵ1-DDP, and with a probability 1 − δ1 with d⊤(v[1]) ≥

d(v(1)) ∧ d⊤(v[2]) ≥ d(v(2)). Then, unlike Algorithm 1, the second

λψ that we use here requires the output of Lines 3-5. Therefore,

Lines 9-11 satisfy
1

2
ϵ1-DDP with probability 1 − δ1. Overall, the

algorithm satisfies (ϵ1,δ1)-DDP.

Second, similar to the proof in Lemma 4.2, we have:

Pr[maxvi ∈G ψ
⊤(vi) ≥ maxvi ∈G ψ (vi)] ≥ 1 − δ2. This leads to

λ =
1

ϵ2
max

vi ∈G
ψ⊤(vi) ≥

1

ϵ2
max

vi ∈G
ψ (vi) ≥

1

ϵ2
LSG (Γ⊔)

with probability 1 − δ2. □

	Abstract
	1 Introduction
	2 Background and Decentralized Differential Privacy
	2.1 Differential Privacy
	2.2 Decentralized Differential Privacy

	3 A General Framework for Subgraph Counting under DDP
	3.1 A Baseline Approach
	3.2 Proposed Multi-Phase Framework

	4 Counting Different Types of Subgraphs under DDP
	4.1 Triangles
	4.2 Three-Hop Paths
	4.3 bold0mu mumu kkkkkk-Cliques

	5 Experiments
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

