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ABSTRACT: The blood−brain barrier (BBB) is a prime focus for
clinicians to maintain the homeostatic function in health and
deliver the theranostics in brain cancer and number of neurological
diseases. The structural hierarchy and in situ biochemical signaling
of BBB neurovascular unit have been primary targets to
recapitulate into the in vitro modules. The microengineered
perfusion systems and development in 3D cellular and organoid
culture have given a major thrust to BBB research for
neuropharmacology. In this review, we focus on revisiting the
nanoparticles based bimolecular engineering to enable them to
maneuver, control, target, and deliver the theranostic payloads
across cellular BBB as nanorobots or nanobots. Subsequently we
provide a brief outline of specific case studies addressing the
payload delivery in brain tumor and neurological disorders (e.g.,
Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, etc.). In
addition, we also address the opportunities and challenges across
the nanorobots’ development and design. Finally, we address how
computationally powered machine learning (ML) tools and artificial intelligence (AI) can be partnered with robotics to predict and
design the next generation nanorobots to interact and deliver across the BBB without causing damage, toxicity, or malfunctions. The
content of this review could be references to multidisciplinary science to clinicians, roboticists, chemists, and bioengineers involved
in cutting-edge pharmaceutical design and BBB research.
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1. INTRODUCTION

With the increase in neurological disorders and the demand for
new drug development, a focus on expedite brain research can
be seen in recent times. Alarming attention to develop novel
neuropharmaceutic raised the urgency to develop in vitro
models, mimicking in vivo like blood−brain barrier (BBB)
structure/function relationship. Due to the complexity and
poor accessibility, BBB models act as an effective alternate tool
for brain research. Use of animal models is considered as the
exemplar of drug testing as the BBB complexity can be easily
recapitulated. This is contemplated to be highly advantageous
considering the ease of testing of pharmaceutical interventions
from the cellular to the systemic level. However, testing of
drugs with in vivo models for BBB is highly tedious, immensely
costly, and time-consuming. Further, there is a huge difference
in drug interactions between animal model and human trials.1,2

Hence, researchers have started focusing on developing in vitro
BBB models or BBB-on-chip devices to overcome these
limitations of new drug development. The need for in vitro
BBB models is indispensable as they also contribute in
identifying the specific physiological and pathological mecha-
nisms under diseased conditions, thereby uncovering the route
to effective drug discovery. The challenges in modeling BBB by
incorporating the key in vivo properties stem from the complex
subtleties of BBB structure and the interactions with
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neighboring cells. Currently, complete mimicking of the entire
brain structure and function in a laboratory engineered design
is unavailable, due to gaps in the knowledge on complexity and
diversity of brain function during healthy and diseased states.
Further, limited techniques and their workability have
provided scope for recapitulation of specific parts of brain
like nonleaky and tight BBB.
Advent of nanocarrier systems for drug delivery has been a

crowning discovery in the field of brain research as they are
said to have the capabilities for conquering BBB defenses based
on their surface properties. Nanoparticles, when combined
with other elements like polymer, have shown ability to
effectively cross BBB and deliver drugs to CNS.3 The many
advantages of using nanoscale materials in brain research have
been identified by several researchers,4,5 and many are still
probing the potential of these materials.6 Nanorobotics
represent a relatively recent advancement in this regard as
they are engineered specifically with sensing, decision making,
and actuation properties.7 Unlike traditional nanoscale drug
delivery strategies, nanobots offer a whole range of possibilities
that include targeting design perspective and the ability to
sense, control, and carry out massive tasks in parallel. For
instance, remote controlling by manipulation of magnetic and
optical properties in an origami-like fabrication of microbots
can provide excellent theranostic applications for several brain
disorders.8 Thus, extending the existing nanodrug delivery
strategies to nanorobotics can shape the future of neuro-
medicine. This review will provide a brief outline on the
physiology of BBB that is significant in in vitro model
development. The review further proceeds with explaining the
existing model system that a nanoroboticist can utilize to
design nanobots for targeting BBB with maneuverable
properties. Finally, an attempt has been made to summarize
the recent advances in the nanorobotics for BBB crossing
theranostic application by utilizing computational modeling

and the technological gaps that needs to be filled by future
researchers.

1.1. Early Attempts To Identify BBB Existence and
Establishing Its Relation with Central Nervous System
(CNS). Blood vessels are the primary infrastructure involved in
the transport and delivery of oxygen and nutrients to all organs.
Being the most complex element of human body, the brain
demands a more complex microvasculature. Research on this
dynamic conduit has been ongoing for two centuries with
several significant findings (Figure 1). Though the original
theory on the existence of a barrier that prevents movement of
molecules was identified by Paul Ehrlich based on dye
injection studies, the term “blood−brain barrier” was initially
coined by biochemist Lina Stern, after the systematic study of
transport of several molecules from blood to brain.9 Similar to
studies by Stern and Gautier, several investigations were
carried out by dye injections to understand the circulations
into the human brain.10 The next important milestone on BBB
was the identification of cellular structure that was responsible
for its barrier properties. After the advent of electron
microscopy, visualization of BBB became feasible and attempts
were made to understand the cellular architecture of BBB
(Figure 1). By injecting horseradish peroxidase, Reese and
Karnovsky11 evidenced the confinement of the same luminal
region which was further attributed to the tight junctions
between two adjacent endothelial cell (EC) membranes.
Further investigations on BBB were focused on identifying
the phenotype involved in the barrier. Grafting experiments
performed in vitro threw light on the involvement of astrocyte
endfeet and several other cell types in the barrier function.10

Early in vitro studies by Arthur and team12 revealed the
existence of tight junction facilitated by the coculturing of
endothelial cells with astrocytes. Simultaneous search on other
cell types involved in BBB was also conducted by several
researchers in the early 19th century. The contribution of

Figure 1. Time line and evolution of experimental model in BBB research ranging from early attempts to identify BBB existence, establishing its
relation with CNS to the most advanced perfusion based models.
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barrier properties by pericytes was first identified in the late
19th century by Eberth.13 Though there was little research on
pericytes in 20th century, emergence of advanced and accurate
techniques has influenced the increasing research on these cell
types in the past 15 years.
1.2. Complexity in Structural and Functional Anat-

omy of BBB. On the basis of these initial studies, the current
knowledge of the components involved in BBB and their
functions has been derived. The BBB is a combination of
several cells including specialized EC, along with microvessels,
astrocytes, pericytes.14 All these cells interact continuously and
further form the basal membrane of the vascular unit (Figure
2A). The interaction of ECs with other neural and immune
cells resulting in an integrated network is known as the
neurovascular unit.15,16 EC and pericytes and astrocytes
contribute to the brain microvasculature and regulate the
passage of substances between brain and blood, thus
maintaining brain homeostasis and also prevention against
pathogens and neurotoxins.17 ECs of central nervous system
exhibit unique characteristics unlike other peripheral ECs that
can be attributed to the tight junctions (TJs) and adherence
junctions (AJs), thus strictly regulating paracellular transport.
The TJs are regulated by the TJ proteins composed of
claudins, occludin (ZO-1, ZO-2, ZO-3), and junctional
adhesion molecules (JAMs) by sustaining TJ structure as
shown in Figure 2B.18 Keaney and Campbell19 noted that AJs
play a role in maintaining TJs and junctional complex. While
TJs control the intracellular transport based on molecular

properties including ionization, lipophilicity, polarity, and
other physicochemical properties, the intercellular transport
is facilitated by diffusion, endocytosis, and the ratio of influx
and efflux transporters (Figure 2B). Similarly, synaptic
signaling is regulated by maintaining optimum ionic
composition using ion channels and such transporters.17,18

Despite the existence of several literature works on the
molecules involved in TJ and their role, specific AJ function is
yet to be studied in depth.
The research on astrocytes contribution in BBB has

increased ever since its role was identified by grafting
experiments. Further coculturing with astrocytes induced
formation of tight endothelium with higher trans endothelial
electrical resistance (TEER) values, thereby reducing the
permeability of different molecules.17,20 Anatomically, pericytes
are part of the abluminal surface (Figure 2A), embedded
within the basal membranes.21 Though the exact role of
pericytes in barrier properties is still unknown, the relatively
higher ratio of pericytes to EC in the central nervous system is
considered to be responsible for the endothelial barrier
properties. Similarly, neurons and microglia further contribute
to maintaining the integrity and functions of BBB. The
transport of molecules is highly controlled by this unique
microvasculature. With the lack of evidence on the exact
function and properties of other cell types, there is a wide
scope for research on studying the role of all cell types during
health and diseased state. With the combined activity of all
BBB cells, resistance to paracellular diffusion of ions and other

Figure 2.Molecular and transport details of BBB: (A) blood−brain barrier formed by the endothelial cells and contributed by pericytes, astrocytes,
microglia, and neurons; (B) structure and function of tight junctions and some of the molecules that contribute to the tight junction; (C) primary
transport routes across the BBB. Created with BioRender.com.
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molecules resulting in high TEER can be noted.18 As a result,
all the cell types and the BBB properties become highly
pertinent with respect to treatment, diagnosis, and imaging for
brain abnormalities.
While TJs maintain homeostasis by restricting passage of

toxins and pathogens, the energy and nutritional requirement
for the brain is achieved by several specific transport
mechanisms, viz., paracellular, transcellular pathways (receptor
mediated and carrier mediated), adsorptive transcytosis, and
passive diffusion (Figure 2C). Small lipophilic molecules like
carbon dioxide are transported across the BBB by passive
diffusion. The mechanism of passage of components between
the endothelial cells is termed as paracellular transport,
whereas the passage of molecules through the endothelial
cells is achieved by transcellular transport. In a healthy brain, a
proper balance of paracellular and transcellular is decisive for
determining the permeability properties.22 The endothelial cell
lining of BBB is known to possess specific receptors for plasma
protein growth factors and several macromolecules on the
luminal and basolateral side of the ECs (Figure 2C). For
example, glucose transporter 1 (GLUT-1), neutral amino acid
transporter, and cation and anion transporters are known to
play key roles in brain metabolism. And this is usually achieved
by carrier mediated transport of their substrates.23 While some
transport pathways are simply governed by a concentration
gradient, some require energy for the transport of the desired
molecules to the brain. In such cases, adenosine triphosphate
(ATP)-driver efflux pumps (also known as ATP binding
cassette (ABC) transporters) contribute to molecular passage
across the BBB to maintain brain homeostasis (Table 1).
Neurotoxins are primarily excluded from the brain by this
passage. Active pharmaceutical ingredients (APIs) also become
the substrate of these transporters and get excreted. Some of
the extensively researched efflux proteins are the P-
glycoproteins (P-gp), breast cancer resistant proteins, and
multidrug resistance associated proteins (Table 1).
Some molecules do not have specific transporter proteins

but still manage to reach the brain. Such transport is usually
facilitated by receptor mediated transcytosis. This is achieved
in three steps, viz., endocytosis, intracellular vesicular
trafficking, and exocytosis. Molecules that need to be
transported get attached to their respective receptors on the
endothelial cell lining, thereby initiating endocytosis. This
molecule and receptor complex are invaginated leading to the
formation of intracellular transport vesicles. While the receptor
gets recycled, the molecules get sorted and exocytosis is carried

out by release of the molecule at the basolateral side.23 Insulin
receptors, low density lipoprotein receptors, and leptin and
lactoferrin receptors are some of the receptors that carry out
receptor mediated transcytosis. A more detailed review on the
mechanisms of transport across the BBB has been reviewed
elsewhere.23 Another mechanism by which molecules cross
BBB is by adsorptive mediated transcytosis which is a
nonspecific pathway unlike a receptor mediated one. Though
this mode of transport exhibits low affinity, it shows higher
binding ability, thus having similar transcytosis efficiency.24

A number of neurological conditions including multiple
sclerosis (MS), stroke, epilepsy, vascular dementia, Alzheimer’s
disease (AD), Parkinson’s disease (PD), brain infections, and
various neurological tumors can be attributed to the
dysfunction of BBB. In all these disorders, BBB dysfunction
is the primary element of pathology influenced by a series of
physiological properties. For instance, basal membrane
degradation, altered expression of components in efflux
pumps, and leaky BBB occur in series, leading to brain
disorders.30 Similarly, in the case of traumatic brain injuries,
such events occur immediately or in a delayed manner and
result in inflammation and activation of coagulation cascades.
Recent evidence also suggests that poor expression of TJ
proteins is the underlying reason for several psychiatric
disorders.31 Similarly in the case of MS pathology leaky barrier
was attributed to being the underlying reason for lesion
formation and disease progress.16 It is eminent to mention that
in many diseases, it is unclear whether disease is caused due to
BBB dysfunction or disruption in BBB is the result of disease.
Thus, a thorough understanding of the BBB properties will
facilitate better model designs and targeted thernostic
development.

2. IN VITRO MODELING OF THE NEUROVASCULAR
UNIT: A CRITICAL APPRAISAL OF ADVANCES IN
THE FIELD

Successful replication of the neurovascular unit provides an
invaluable tool to aid in dissecting out the pathological factors,
mechanisms of action, and the onset of CNS disorders. Models
are crucial to predict the uptake of drug candidates prior to
costly and laborious in vivo studies. The human body is
composed of both cellular and noncellular material organized
in a highly specialized manner. It is difficult to mimic all
aspects of human biology with one in vitro model system.
Nevertheless, in vitro models continue to hold significance in

Table 1. Entities Crossing the BBB

active
transport

passive
transport

mixed
transport remark

Lipid-soluble molecules yes Influenced by concentration gradient and lipid solubility
Example: blood gases and anesthetics, heroin25

Solute carriers (SLC) yes yes Driven by electrochemical (i.e., Na+ or H+ pump) or by concentration gradients26

Example: drugs like L-DOPA, glucose, amino acids, nucleosides, monocarboxylates, and
organic anions and cations

Carrier-mediated efflux (efflux
transporters)

yes Involves energy expenditure by ATP hydrolysis for transport against concentration
gradient

P-glycoprotein (Pgp, ABCB1) and breast cancer related protein (BCRP, ABCG2) are
some efflux transporters

For example, a variety of cytotoxic drugs27

Receptor mediated transport yes Induced by binding of molecules to receptors like insulin receptor, low density
lipoprotein (LDL), transferring receptor

Example: nutrients like insulin, iron, and leptin28,29
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brain research, drug development, and testing owing to their
flexibility in designs.
2.1. Primary Cells, Cell Lines, and Human-Induced

Pluripotent Stem Cells Model. The first and foremost
challenge in developing a BBB-on-chip is the choice of cell
lines or types used in the model development, specifically brain
microvascular ECs. It will determine the translational relevance
of the model since the model exhibiting highest similarity to in
vivo BBB structure and functions is considered to be a more
reliable model. Primary cell lines are regarded as the ideal
candidate, as they provide the closest approximation to their in
situ counterpart.32 Such primary and low passage EC has the
ability to mimic or reproduce maximum biochemical
functionalities and possess morphological similarities to their
in vivo counterpart.33

Initially, several BBB models were established by culturing
primary human brain ECs, by isolating the tissues during brain
specimen resection in tumor patients or during autopsy.
However, concerns regarding the availability, poor yield,
contamination by other cell types, and reproducibility of the
cell lines limit their ubiquitous use in BBB models.33 On
removal from the host environment, human brain ECs
dedifferentiate rapidly and lose their primary BBB properties,
leading to drift in the phenotypic traits resulting in leaky
paracellular function.34 To circumvent this problem, cell
immortalization was attempted by few researchers. Human
cerebral microvascular endothelial cell line (hCMEC/D3) is
one of the most commonly used human immortalized cell line
in the BBB model development other than immortalized cell
lines from animals.33 However, few reported poor tight
junction protein expression resulting in low TEER values,
thus making them unworkable for BBB model development.35

Alternatively, primary brain ECs from mouse, bovine, rat, and
porcine like mouse b.End.3 cell line, rat GP8, RBE4 cell line,
etc. have been used for developing the in vitro BBB model as
they pose better advantages than primary cell culture in terms
of the ability to form better functional BBB, low cost
maintenance, and faster growth.36 As the brain micro-
vasculature occupies only 0.1% (v/v) of the whole brain, a
large number of rodents are needed to generate the required
brain ECs. Nevertheless, similar to in vivo models, species
difference results in poor translational relevance.37 For
example, it was noted that there was a dramatic decrease in
the activity of γ-glutamyl transpeptidase and alkaline
phosphatase by the RBE4 cell line in comparison with isolated
brain capillaries.38

Identification of potentials of pluripotent stem cell (PSC)
came as a breakthrough for development of model systems of
human and has cleared a path for novel avenues in the field of
neurotherapeutics. These preimplanted embryo-derived renew-
able cell lines have inherited developmental capacity to
generate all kinds of cell types.39 They are known for their
ability to renew by itself and differentiate into phenotype by
pluripotent. Researchers have ever since attempted to
differentiate pure population of ECs from PSC that are
capable of possessing BBB properties.40 Human induced PSCs
possess several key characteristics of brain microvascular ECs
including good tight junction properties and appropriate
expression of efflux transporters, thereby having an effective
measurable TEER value.40 Hence, a large accumulation of
literature in recent years on BBB models involving these cell
types can be seen. Many researchers have also identified
enhanced barrier function by coculturing induced PSC based

brain ECs with primary astrocytes, pericytes, and neural
cells.41−43 Further focus on using induced PSC derived cell
types of astrocytes and pericytes was also attempted recently to
note an improvement in the TEER values,44,45 thus making a
personalized approach on modeling BBB, with the hopes of
gaining new insights on genetically influenced neurological
disorders. Use of models with induced PSC offers potential for
investigation of BBB breakdown at the earliest stages of
dysfunction, which can be difficult from post-mortem tissue
use.46 However, reports have identified the lack of complete
translational relevance of iPSC based brain ECs to their in vivo
counterparts like showing epithelial markers along with
endothelial cells.47

2.2. Components of Microengineered Perfusion
Based Preliminary BBB Models (Structural Basis). In
vitro modeling of BBB has seen many radical changes and
novel technologies as an amelioration of the existing traditional
techniques. Several in vitro BBB models have been developed
including monolayer, coculture, dynamic models, and micro-
fluidic models. It is to be noted that no in vitro model can
exactly replicate the in vivo conditions. However, they bridge
the gap between pathology and drug discovery. By under-
standing the limitations of the different models, a better model
can be designed and applicability of the data obtained can be
determined by better assessment of the results. BBB models
involving cell cultures are the most versatile model for basic
research on permeability studies.48 Cell culture models, based
on either primary cells or immortalized brain endothelial cell
lines, have been developed in order to facilitate the in vitro
studies of drug transport to the brain and studies of endothelial
cell biology and pathophysiology. One primary challenge in
these models of BBB is that brain ECs undergo rapid
dedifferentiation when removed from their native environ-
ment, resulting in a generic phenotype.49

These in vitro models can be classified as static and dynamic
models based on their ability to create shear stress mimicking
physical traits of BBB. Static cultures are employed in studying
transport kinetics, signaling pathways, and high throughput
screenings.50 Most of the static BBB models employ cell
cultures in Transwell systems. On the basis of the number of
cell types used, static model can further be classified as
monolayer model and coculture system. In the former, the
brain ECs are cultured on top of a permeable membrane, thus
enabling compartmentalization of blood side and brain side.
This microporous membrane actively prevents migration of
cells to the other side while selectively permeating only the
small molecules or cell expressed protein components. To
maintain the selective permeability and nonspecific diffusion,
the BBB associated in vivo capillaries are generally 1−3 cell
layer thick, and in vitro experiments also demonstrate that cell
viability is preserved in 40 μm or 1−3 cell thick layer.51

Therefore, Transwell membranes which are 10−30 μm thick
exhibit a suitable in vitro culture system for the BBB
experiments. A more detailed review on the types of porous
membranes adapted for this application has been discussed
elsewhere.52 Due to the polar nature of the brain ECs, apical
blood compartment and basolateral brain side are achieved. It
is to be noted that the monolayer BBB model has only one cell
type, the brain EC, and has no communication with any other
cell types. However, there is more room for maneuvering in
Transwell setups, thus making coculturing with other cell types
feasible.53 Due to such flexibility in its design, Transwell
systems still continue to be widely used as one of the primary
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BBB models, owing to their user friendliness and ease to set
up. However, there are several limitations inherent to these
models including 2D structure and poor or no exposure of EC
to shear stress.
3D cell culture is of representation that is more accurate. In

contrast to static models, dynamic models were created with
the sole purpose of replicating the physiological surrounding of
BBB and addressing the limitations of 2D cultures in terms of
in vivo tissue specific functions. A range of approaches have
been used to create shear stress in BBB models including
hollow fiber constructs (spheroid model) and microfluidics
systems.54 Such dynamic in vitro BBB (DIV-BBB) holds the
ability to self-assemble to resemble the anatomy of brain
microvasculature with high TEER values.55 DIV-BBBs are one
of the initial 3D systems developed to replicate the complexity
of the BBB with ECs cultured on the luminal side of the
capillaries or hollow fibers, while glial cells are seeded on the
outer surface.56,57 A comparative study between cell barriers
cultured in a static flow (Transwell) and dynamic flow (DIV-
BBB) environments showed that fluid flow conditions greatly
influence how a cell barrier develops. TEERs across the DIV-
BBB culture increased to 10-fold higher than those recorded in
the Transwell and are much closer to values observed in vivo.57

2.3. Organoid and Spheroid in Vitro Models. Research
with a more realistic 3D model of BBB can better mimic the
BBB properties in vivo. For this purposed 3D cultures can be
classified based on the complexity of the structure as spheroid,
multicellular spheroid, and organoids.58 On the basis of the
culture conditions and methods, different models can be
achieved. Though many organs have been modeled using these
techniques, research on BBB spheroids and organoids is very
limited owing to their complexity. Organoids are in vitro
derived 3D cell aggregates derived from primary tissue or stem
cells that are self-renewed and self-organized and exhibit organ
functionality. BBB organoids are obtained following coculture
of endothelial cells, pericytes, and astrocytes under low
adhesion conditions. Such a self-assembling model provides a
certain degree of developmental freedom resulting in a model
of BBB structure with similar complexity.59,60 The noteworthy
feature of organoids model is that each cell type in the
organoid is in direct contact with each other which is crucial

for BBB integrity. As a result, organoids reproduce many
features of the BBB, including the expression of tight junctions,
molecular transporters, and drug efflux pumps and hence can
be used to model drug transport across BBB. They are one of
the relevant models of in vivo conditions and proved to be a
stable system for extended cultivation. They are a cost-effective
and versatile model for therapeutic discovery for the treatment
of various neuropathologies. Research on cerebral organoids
has seen significant advances in recent years with more specific
protocols for developing vascularized organoids.61,62 One of
the critical drawbacks of organoids is the absence of essential
types of cells, including glia, microglia, oligodendrocytes,
vasculature, etc. This may hinder neurons maturation, thus
limiting its utilities for specific disease models.
To overcome the limitations posed by organoids, 3D

spheroid model of the BBB comprising all major cell types
including neurons, microglia, and oligodendrocytes were
developed to recapitulate more closely normal human brain
tissue. Spheroids show expression of tight junctions, adherent
junctions, adherent junction-associated proteins, and specific
markers. Use of induced pluripotent cells to derive the cells
could help narrow the gap in achieving an ideal in vitro BBB
model.63 For example, high cell viability was found to be
maintained up to 21 days in the spheroid model containing six
cell types, which is useful in evaluating long-term effects of
drug toxicity. Expression of P-gp and GLUT-1 proteins was
identified. Junctional protein distribution was altered under
hypoxic conditions.64,65 Thus, the spheroid model may have
potential applications in drug discovery, disease modeling
neurotoxicity and cytotoxicity testing. However, structural
consideration in terms of extracellular matrix and cell specific
function needs to be addressed to make this model applicable
for pathology studies.

2.4. Microfluidics and Application of 3D Printing. The
behavior of vascular cells is greatly influenced by mechano-
transduction creating the ability to convert biophysical stimuli
to biochemical signals in the cellular microenvironment.66 Due
blood flow, brain ECs are subjected to shear stress that in turn
realigns and elongates according to flow by redistribution of
junctional proteins (Figure 3). Additionally, the mechanism
involving vascular endothelial (VE)-cadherin, platelet endo-

Figure 3. Physical traits and dynamic environment in and around BBB. (A) Principle physical forces ensuring the barrier function of BBB; (B)
cutting edge in vitro BBB models following perfusions system and BBB specific cytometry to recapitulate the advanced BBB models.
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thelial cell adhesion molecule (PECAM-1), vascular endothe-
lial growth factor (VEGF), etc. is considered to be responsible
for this effect by the cells.67 With the aim of recreating this
intricate biomechanical interaction, application of microfluidic
devices was adopted giving rise to a new generation of BBB
models “brain-on-chip”. Due to its several advantages,
microfluidics has emerged as the innovative approach for
conducting research related to the brain, including modeling of
neurodegenerative diseases and high throughput drug screen-
ing. A typical microfluidic pattern is derived by soft lithography
of elastomeric material, and the cells are cultured on the
channels under dynamic flow to induce cell proliferation.
These so-called “organ-on-chips” contain microfluidic devices,
in which cells are cultures in a continuously perfused,
micrometer sized compartments to mimic the physiological
conditions in the tissues. The different aspects of microfluidics
and their application in brain research have been discussed in
several reviews.54,67,68 To date, several designs of microfluidic
BBB exist, including sandwich, parallel, 3D tubular design, and
vasculogenesis pattern.69 The former two are a more
preliminary and well explored model, while the latter are the
advanced design of microfluidic models. As a recent advance-
ment in the microfluidic BBB on chip development, 3D
printing to replicate the neurovascular microenvironment by
collagen was attempted to conduct studies on drug screening

and inflammation.70 By control of the cell patterning, different
cell types can be cultured in distinct patterns similar to their
environment in vivo. 3D printing of microfluidics network
highlights the most recent advances in BBB-on-chip devices,
where elements are added to fabricate objects based on 3D
model data. The intended product is digitally rendered in 3D
with computer aided design (CAD) software. Raw materials
such as thermoplastic polymers, natural polymers, and
biocompatible synthetic polymers are processed into filaments
and granules. Unprinted materials will also be harvested and
recycled for continued use in the printing process. The leading
3D setup processes for microfluidic systems are 3D printed
transfer molding, fused deposit in modeling, stereolithography,
direct ink jet printing,71 and selective laser sintering.72

Polyjet,73 digital light processing,74 liquid deposition model-
ing,75 and fiber encapsulation additive manufacturing are the
new developed techniques.76 Despite the several advantages of
3D printing in BBB microfluidics, the technology is yet to gain
momentum due to several bottlenecks. For instance, the
complexity of the tissue to be reproduced increases
exponentially the complexity of the technical challenges that
need to be overcome, thus hindering the widespread adoption.
However, complete integration between multiple fields and
examination of validation steps will strengthen their future
applications. The key attributes with merits and demerits of

Table 2. Current Model of in Vitro BBB with Merits and Demerits

type of model features advantages disadvantages

Static 2D
• EC monolayer on Petri dish Endothelial cells grown directly on Petri dishes filled

with medium
Cheap and facile standardization Quick dedifferentiation of cells

High throughput screening No shear
Limited barrier properties
Can be applicable only for
monolayer

Lack of cell−cell interaction
Static Transwell 2D
• Monolayer Endothelial cells gown on porous membrane Cheap and easy standardization Lack of cell−cell interaction

No shear
• Coculture Endothelial cells and astrocytes and/or pericytes

grown on either side of porous membrane to form
apical and basal side

EC-perivascular interaction Lack of blood flow and shear stress
Limited barrier properties
Limited cell−cell interaction

3D
• DIV-BBB Initial models of 3D culture Improved physical attributes Requires high cell numbers

Low cost fabrication Invisible cell−cell interaction
Enable shear stress with capillary-
like structures

Limited leukocyte transmigration

Possible hemodynamic studies Not ideal for high throughput
screening and kinetic studies

• Organoids Self-assembling under low adhesion of EC,
astrocytes, pericytes

Can be made patient specific Lack vasculature
In vivo like complexity and
architecture

Less amenable for high throughput
screening

Assay complication
• Spheroids Involves microglia in addition to ECs, astrocytes,

pericytes
Ease of use Simplified architecture for

pathological studiesHigh reproducibility and scalability
• Microfluidics BBB Traditional microfluidics patterns by soft lithography

with channels for coculture of EC and astrocytes/
pericytes

Flexibility in design Moderate TEER
Less cell number requirement Limited scalability
Control of microenvironment Complex fabrication
Considerable shear stress
In vivo like structure

• 3D printing Patterning of the channels by 3D printing similar to
in vivo microenvironment

In vivo like architecture Lack of high through put screening
Immediate permeability studies Not ideal for kinetic studies
Flexibility in design
Built-in multicellular network
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each model are listed in Table 2 to facilitate wise choice of
models for future theranostic development. Despite the several
advances in different in vitro models, there continues to be
prospects for newer and more advanced models, aiming at
tighter junctions, close cell−cell interaction, and better shear
induced BBB morphology, ultimately aiming at close
mimicking of BBB properties. With very limited therapeutic
options for neurological disorders, in vitro modeling of BBB
continues to appeal to a majority of neuroscientists.

3. ADVANCES IN NANOROBOTICS-ENABLED
TARGETED DRUG DELIVERY ACROSS BBB

The primary drive in the field of neuromedicine is to develop
smaller, efficacious, and cost-effective systems that will easily
cross the BBB and reach the brain parenchyma. Such a quest is
based on the cellular and subcellular genesis of neurological
disorders. Of the different approaches available to circumvent
the BBB defense mechanisms, application of nanorobotics has
gained more popularity due to their multifunctional approach.
The programmed nanoparticle to theranostic delivery across
BBB can be addressed as “nanorobots or nanobots” since they
are capable of carrying out specific tasks with controlled
maneuvering and targeting.77 Nanorobots are biocompatible
entities of size 1−1000 nm and are synthesized using several
biomaterials including lipids, polymers, metals, and crystals.
Scaling down the tiny robots from microscale to nanoscale
reveals several unique scale-dependent properties such as low
power independent actuation and dynamic switchability
between 2D and 3D swimming.78

The recent focus on controlling and maneuvering the
nanorobots in in vivo microenvironment has attained major
thrust in the field of theranostic application. In this context, the
control of nanorobots requires device modeling (e.g.,
biohybrid, self-(dis)assembly driven), fields (e.g., untethered
magnetic field, optical, electric field), and feedback (e.g., open
or closed loop). In such a case, manipulation of nanobots by
external magnetic field in the clinical environment using
magnetic resonance imaging (MRI) will be feasible and can be

precisely relocated for delivery in the brain. The magnetic
torque applied by uniform magnetic field lines to nanorobots
aligns and redirects the nanorobots motion, providing a high
degree of local control on device and facilitating long lasting
operation.79 Further control and maneuvering of bacteria
driven nanorobots could be harnessed in the future, riding
upon advances in synthetic biology to produce programmable
and functional magnetic components via genetic manipulation
responsive to local environment.80,81 Similarly, optical control
is another practical possibility, with limited penetration to
body tissue, and is still in a state of infancy for nanorobots
control. The closed loop control feedback, often called
feedback control systems, is the method of choice with the
ability to self-correct in an autonomous in vivo microenviron-
ment.82

Nanomaterials can be formed in different structures with
specific size and other physical properties like optical,
photodynamic, magnetic, etc. Owing to their flexible proper-
ties, they can be used to target specific sites. The nanorobots
are tamed to selectively sneak through the permeable
membrane, which regulates the passage of a multitude of
large and small molecules into the microenvironment of the
neuron, without perturbing the homeostasis of CNS. As shown
in Figure 4, these stealth nanobots are selectively programmed
to disguise those traffic posts via molecular mimicry to assist a
multitude of tasks such as imaging, delivery, sending, and
precision surgery.83 Bioengineers and roboticists are develop-
ing ways to safely bypass the BBB to deliver the therapeutics to
the brain without any long-term effects. In this regard,
nanotechnology is providing the permeable platform enabling
delivery of drug across the BBB. For example, nanodiamonds, a
less toxic substitute to other carbon nanoparticles, are currently
applied in biomedical imaging, drug delivery, and other areas
of medicines.84 The excellent biocompatibility, functional
versatility, and unique surface electrostatic properties of
nanodiamonds are attributed to the drug delivery.
Regardless of the high restriction to the transport of

molecules across the BBB, the CNS continues to demand

Figure 4. Emerging scope of nanorobotics in neurology. The four quadrants of the scheme demonstrate the trend of nanorobots application in
imaging, nanomedicine, nanotheranostic, and envisioned nanosurgery in single targeted cells, a visionary cutting-edge technology for precision
medicine with versatile task achievement.
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Figure 5. Multifunctional design criteria of nanobots to cross the BBB: (A) varying ApoE ligand density to tame the barrier transport of nanobots
for therapeutic delivery scheme involving multireceptor mediated therapy; (B) soft-nanobots decorated with paclitaxel-loaded cationic liposome
targeting to suppress postoperative glioma recurrence crossing BBB; (C) schematic illustration of nanobots with integrin based sorting and
detection of brain glioblastoma comprising cell penetrating RGD peptides for surface enhanced Raman spectroscopy. Figure is created with
BioRender.com.
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nutrients and energy to be regularly supplied to it. For this
purpose, several mechanisms exist that facilitate the transport
of small molecules that keep the CNS functions intact. To
effectively deliver drug molecules, one should tap into the
potential of these transport mechanisms, thereby leading to an
effective therapeutic opportunity without having to succumb to
brute force techniques that involve the mechanical or physical
disruption of barrier.85 Nanobots are designed to be able to
cross the blood−brain barrier through several pathways to
enable communication and transport of nutrients across the
blood−brain barrier in endothelial cells. The prospect of
delivering drug by passive diffusion is very limited due to the
highly selective nature of BBB. This is arbitrated by the TJs
and adherence junctions in addition to the phospholipid part
of ECs. The only possibility for drug delivery by this
mechanism is to develop a small lipophilic molecule, which
in turn is highly dependent on the surface area, charge,
molecular weight, and volume.86 With higher lipophilicity,
lower hydrogen bonding further reduces the diffusion.87 Thus,
net migration of components is highly dependent on the
concentration gradient, thereby becoming a poor choice of
transport pathway for drug molecules, especially through
nanoparticulate transport.17

By specific design of the nanoparticle to mimic the
components that have the ability to undergo paracellular
transport, targeted drug delivery can be achieved. Also,
utilizing the potentials of components naturally entering BBB
by this pathway can also be explored for targeted theranostics.
For instance, neutrophils have the natural ability to cross the
BBB and infiltrate the tumor mass in a brain cancer patient.
These immune cells can be used as “Trojan horses” to deliver
the drug payload or imaging agents to the affected sites. Xue
and team88 explored the ability of neutrophils to deliver
paclitaxel loaded cationic liposomes (PTX-CL) into the
inflamed brain tissue after surgical resection. It was noted
that such a designed PTC-CL/NE delivery system significantly
reduced the recurrence of the brain tumor (Figure 5A).
It is to be noted that many of the targeted drug delivery

using nanoparticles focuses on crossing the BBB through
transcytosis, owing to the ability to develop nanocarriers
specific to receptors.89,90 Polymer and magnetic nanoparticles
facilitate drug delivery across the BBB through receptor
mediated transcytosis.3,91 Nanocarriers can also be designed to
target receptor mediated pathway by preparing the nano-
carriers-like extracellular vesicles secreted by cells so that they
can carry the drug load across the BBB through endocytic
pathways.92 By utilization of the potential of ligands that can
facilitate the crossing of BBB via carrier mediated or receptor,
mediated pathways can effectively release the desired
compounds, thereby facilitating drug delivery or enhanced
site-specific imaging feasibility. For example, the BBB crossing
ability of apolipoprotein E peptide (ApoE) and SAP loaded
chimeric polymerosome was investigated.93 It was noticed that
ApoE promoted multireceptor mediated pathway including
LDLR, LRP1, and LRP2 (Figure 5B). In order to develop
efficient nanobots, one should know the different mechanisms
by which molecules get transported across the BBB. By tailor-
making nanomachines, a different transport mechanism can be
achieved with a wholesome theranostic application.
Brain cancer or glioblastoma is highly invasive and one of

the most devastating deadly neoplasms. The prognosis remains
dismal, and the median survival rarely exceeds 16 months. The
present clinical treatment approaches include surgery, chemo-

therapy, and radiotherapy. However, it is widely known that
complete surgical ablation is impossible and the possibility of
recurrence is high.94 Nanotechnology poses as a remarkable
alternative to such a conventional, invasive diagnosis and
treatment in the field of brain tumor. For example several
fluorescence, photoacoustic, and Raman imaging nanoprobes
(Figure 5C) have been highly efficient for intraoperative
imaging of tumor cells.95,96 A wide spectrum of potential drugs
have been investigated to treat several neurological disorders,
but their therapeutic success is still limited due to a range of
challenges. The past decade has witnessed an unprecedented
expansion in engineering of various kinds of theranostic
nanobots for cancer imaging and therapy (Table 3). The
development of theranostic nanobots that are tumors-specific,
safer, simpler, and yet still powerful will continue to be the
focus in the near future, holding a greater potential to be
translated into the clinic.
Nanomaterials as a possible therapeutic system for targeting

neurological disorders has gained more attention due to their
versatile properties. Unlike conventional drugs they hold the
potential to overcome the BBB defenses, thereby becoming the
nucleus of several neurological research. Despite the rapid
advancements and the abundant application of nanomedinces,
their translation to clinical process has been very slow. To date,
very limited nanomedicines have been approved for clinical use
by FDA and many nanoparticles are continuing to be the
subject of several clinical trials in recent years.111 It is to be
noted that the vast majority of the approved nanomedicines
and those in development are dedicated toward cancer
therapeutics.112 However, the field of nanomedicine is
continuing to be the forefront of several research studies,
owing to their potential to surpass several bottlenecks,
particularly in the field of brain theranostics. Considering the
limited number of nanomedicines for neurological disorder to
date, an augmented interest toward nanomedicines for
overcoming BBB defenses can be expected in the near future.
It is to be acknowledged that the development and clinical
translation of nanomedicine for neurological dysfunctions are
accompanied by their own hitches, owing to the limitations
posed by the size and also the recent necessities to develop
safer nanomaterials.113 This can be attributed to the poor
predictability of these nanomaterials’ behavior and state in the
complex BBB atmosphere. For instance, disease pathology in
each patient may vary, thus affecting the effectiveness of the
nanoparticle. Similarly, the drug behavior with humans could
vary from their behavior in animal models with the same
pathological condition resulting in failure of clinical translation
due to such discrepancies. Recent advances in bioprospecting
of natural resources for development safer and natural
nanotherapeutics could hold the future of BBB targeting
nanomedicine.114,115 Further investigations on the nano-
medicine properties like their pharmacokinetics, pharmacody-
namics, and bioavailability need to be thoroughly studied in
addition to their toxicity, side effects, and biocompatibility
prior to clinical use. For example, the tamed nanorobots after
extravasation from the blood vessels will largely be trapped into
the cells in closest distribution of blood vessels (Figure 6).
Furthermore, even if the nanoparticle meets the standards of
clinical trials, at a manufacturing point of view, the scale-up of
nanoparticle synthesis is difficult, making them a poor choice
for pharmaceutical companies to venture into bulk production.
Despite the challenges in nanoparticle development, the
promise that nanomedicines hold in the field of brain
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theranostics is huge and is rightly considered to be the
revolutionary therapeutics of this era due to their versatile
nature and tremendous potential.

4. MACHINE LEARNING HELPING IN PREDICTION OF
CHEMOTHERAPEUTICS CROSSING BBB

The experimental validation of theranostic agents crossing the
BBB to investigate the permeability and drug development
targeted to the central nervous system is a very long process.
Sometimes it may take a decade and at the end has a very low
success rate. This is due to the extraordinary complexity of the
brain, the degree of side effects, and most importantly the
inadequate precision of the BBB model to investigate in vitro.
Therefore, it is of paramount importance to develop
prescreening tools for large chemical databases with the aim
to test different nanobots. Over the past decade, several
computational models have been dedicatedly developed to
investigate the BBB permeability including machine learn-
ing.116 Several approaches are available in this regard, which
are reviewed elsewhere.117 Recently computational nano-
toxicology and nanomedicine have made great strides for
safer theranostic to biomedical materials designs.118,119 By
application of appropriate algorithms, prediction of BBB
permeability with high accuracy can be achieved. A proper
amalgamation of the research knowledge, BBB physiology, and
permeability models can result in such accurate predictions,
thereby making drug development a rapid process. The
computational artificial intelligence (AI) in this context could
be categorized as application driven screening in neuro-
oncology, CNS infections, and neurodegenerative disorders
such as Alzheimer’s, Parkinson, and multiple sclerosis. The
computation AI could also assist indirectly BBB related
neurotechnology paving the engineered nanomaterials’
(ENMs) design for BBB theranostic and imaging, AI for
targeting and control maneuvering in CNS arena (Figure 7).
There is a big development in quantitative structure activity/

property relationship (QSAR/QSPR), which is based on
database/similarity searching perform systematic evaluation
and prediction of whether a molecule could cross the BBB or
not. The databases store the info about chemotherapeutics
with BBB permeability measured in vivo in animal models as
logBBB, i.e., the logarithmic ratio of brain to plasma
concentration of test or experimental molecule. The modeling
algorithm includes fingerprints molecular similarities of a test
compound using distance measuring principal coordinates
analysis as input.
Several recent studies on application of QSAR models and

AI tools have been established for predicting BBB perme-
ability.120−123 The machine learning algorithms convert high
dimensional data into a lower dimensional vector of
coordinates for each molecule such as nearest neighbors,
support vector machine, deep neural network, and random
forests. Identical pipelines are built for the classification or
regressions tree development with neural network and
similarity matrix computed via principle component analysis
(PCA). Outputs of vector of coordinates only then are
predicted as molecular weights and log P variables as a measure
of solubility because traditionally these are two important
factors that explain why certain molecules cross the barrier;
however alone they do not seem to be enough for this
classification. The advantage of random forests algorithm is
that it allows the analysis of individual variables by looking at
their impact in the decrease of accuracy based on the numberT
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of bonds in molecular rings as particular descriptors. On the
basis of data training, it sets a certain threshold predicating
high or low probability of being classified as a crossing
molecule. It is expected that the lower weight molecules
preferred crossing the BBB. Most importantly random forests
choose the number of oxygens with one single bond as the
most important variable to distinguish between crossing and
then comparison of the overall accuracy. RFs implementation
utilizes low P values indicating that data are unlikely with a true
null, thus rejecting the null hypothesis for the entire
population. This enables high predictive capability for crossing
the BBB and the ability to identify the most important
molecular descriptors for the particular classification in
conclusion of the most potent statistical method for
predictions.
Gao and others123 reported significant prediction accuracy

gains (from 0.69 AUC to 0.85 AUC) that can be obtained by
using both chemical features and clinical phenotypes,
compared to using chemical features alone. They have also
identified a large number (110) of drugs in a database that can
potentially penetrate BBB with their learned model. Sub-
sequent work studies the same problem and improves
prediction accuracy using a deep neural network model, in

which the neural network is a four-layer multilayer
perceptron.124 Wang and team125 address the data imbalance
(i.e., the majority of chemicals in the training data cannot
penetrate BBB) through resampling methods, such as SMOTE
and SMOTE+. Recently, Alsenan et al.121 designed and
developed a recurrent neural network (RNN) for predicting
BBB permeability, which improves prediction accuracy further.
The same authors proposed a dimensionality reduction
technique Auto-KPCA, which applies kernel principal
component analysis (KPCA) as a preprocessing step to
enhance the accuracy performance of the subsequent deep
learning model.126

Finally, it is noteworthy to mention that although the above
methods can accurately predict BBB permeability of a given
chemical, they do not directly help generate a de novo chemical
structure with desirable BBB permeability properties. The state
of the art for AI-based chemical synthesis127 follows the
methodology of inverse molecular design128 and combines
deep reinforcement learning with Monte Carlo tree search
(MCTS) to search for a molecular structure with target
properties that can be synthesized with known chemical
reactions. In contrast, MolGAN129 directly generates the graph
structure of a new chemical that resembles known drugs, based

Figure 6. (Upper panel) Enhanced permeation and retention (EPR) effect and nanotheranostic crossing BBB at brain−blood interface showing
saturation effect in neighboring microcapillaries (created with BioRender.com). (Lower panel) Delayed-binding strategy. Nanoparticles are
shielded from binding for a duration Tdelay after injection, thereby allowing them to diffuse freely throughout the tumor tissue. After this diffusion
period, the shielding is degraded based on pH, enzymatic activity, injected chemicals, or external energy sources to unveil intact targeting ligands.
The nanoparticles are then able to bind to the tumor cells. Lower panel is reproduced with permission from Hauert, S., and Bhatia, S. N.
Mechanisms of Cooperation in Cancer Nanomedicine: Towards Systems Nanotechnology. Trends in Biotechnology. Elsevier Ltd. 2014, pp 448−
455, https://doi.org/10.1016/j.tibtech.2014.06.010.130 Copyright 2014 Elsevier.
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Figure 7. Machine learning and artificial intelligence in advance nanobots design and safety prediction to cross the BBB: (A) scope of
computational tools; (B) information driven biophysical design criteria for advance nanobots; (C) physiology based pharmacokinetic (PBPK)
models in predicting the safety assessment of chemotherapeutics carrying nanobots for crossing the BBB.
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on a generative adversarial network (GAN). None of these
methods, however, have been applied to create new chemical
structures with BBB permeability, which might be a promising
direction for future studies.

5. CONCLUSION AND FUTURE PROSPECT
Navigation across the BBB continues to be one of the primary
challenges in neurotheranostics development. While nano-
delivery strategies continue to be the best choice in this regard,
nanobots can be considered as the pinnacle for surpassing BBB
defenses with better control. In future the nanomotors design
must accompany application-specific design strategy to follow
facile systemic clearance/removal after the therapeutic delivery
to the CNS. Therefore, functions required by nanomotors for
the therapeutic payload, targeting to BBB, maneuvering control
while in systemic circulation and clearance from kidney
filtration must be reflected in their physical design intended
as per the applications. The smart in vivo performance of
nanomotors can be envisioned by selecting self-degradable
biopolymers designs that can be broken down into their tiny
molecular components to readily clear from brain without
causing any immunogenic response or toxicity to brain cells.
Therefore, nanorobotics can appreciate plenty of leverage from
bioinspired designs strategies involving biomaterials research.
In spite of greater development and successful in vitro
demonstration of nanorobots with precise control, actuation,
and cellular targeting, in vivo applications face tremendous
challenges to tame the nanorobots for the theranostic imaging
and chemotherapeutic delivery across the BBB. Considering
reduction, refinements, and replacement (three Rs) in
research, the iterative designs of nanorobots can be improved
and tested in the realistic phantoms and ex vivo tissues
following scientific ethics and the regulatory permission aspects
for rapid bench-to-bedside translation.
Visualizing the dynamics of NPs in the laboratory is often

achieved by fluorescent images of adherent cell monolayer
culture. Computer simulations have helped model and imagine
these complex structures, but stochastic simulations lack
physical grounding and are hard to understand. Crowdsourcing
test beds can be a key to simplifying stochastic simulations and
the physical world predicting homogeneous or inhomogeneous
distribution of NPs over cell monolayer depending on
tightness of membrane−corona binding. The machine
intelligence has to come up with the superior algorithms to
tame and control these nanomotors to cross the BBB and reach
deeper into the brain tumor. Better algorithms are needed to
simulate the binding kinetics, transport, and internalization of
nanoparticles on a representative cell monolayer, and
stochastic and deterministic reaction−diffusion models can
be implemented. Rather than modeling a specific cell line in
focus, the experimentalist must collaborate with code
developers to focus on a complex scenario whose solution
will generalize to a wide variety of cell−NPs interactions
addressing in a wide variety of biological barriers environ-
ments. Such an advanced algorithm will predict delayed
binding to cells close to microcapillaries until the first batch of
internalized particles are actively pushed deeper into tumors
via active magnetic nanorobots swarms controlled by
untethered magnetic coils.130

In conclusion, the actual envisioned application of nano-
robots to payload delivery across the BBB needs to address the
common challenges (synthesis, mobility, tracking, toxicity,
biodegradability, etc.) in addition to control and maneuvering

schemes. The recent advances in computation design and
discovery of nanomaterials using machine learning tools can be
utilized to unambiguously address the failsafe synthesis of
nanorobots with increasing performance.131 Similarly nano-
QSAR approaches to predict the fate of these nanobots in an in
vivo environment could result in effective bench side
applications.132 However, mobility and tracking in the in
vivo environment are a matter of continuous improvement
with advancing technologies in design and development of
nanorobots to cross the biological barriers. Hence, an
integration of in vitro and in silico techniques could result in
the development of effective theranostic nanobots for neuro-
logical disorders in the future.
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