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ABSTRACT
We demonstrate OceanRT, a novel cloud-based infrastructure that
performs online analytics in real time, over large-scale temporal
data such as call logs from a telecommunication company. Apart
from proprietary systems for which few details have been revealed,
most existing big-data analytics systems are built on top of an of-
fline, MapReduce-style infrastructure, which inherently limits their
efficiency. In contrast, OceanRT employs a novel computing archi-
tecture consisting of interconnected Access-Query Engines (AQEs),
as well as a new storage scheme that ensures data locality and fast
access for temporal data. Our preliminary evaluation shows that
OceanRT can be up to 10x faster than Impala [10], 12x faster than
Shark [5], and 200x faster than Hive [13]. The demo will show
how OceanRT manages a real call log dataset (around 5TB per day)
from a large mobile network operator in China. Besides presenting
the processing of a few preset queries, we also allow the audience
to issue ad hoc HiveQL [13] queries, watch how OceanRT answers
them, and compare the speed of OceanRT with its competitors.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

General Terms
Design, Management, Performance

1. INTRODUCTION
We have entered the big data era, in which organizations rou-

tinely collect terabytes or even petabytes of data. For instance, one
of Huawei’s client, a large mobile network operator in China, ac-
cumulates over 5 TB of call logs each day. The capability to gain
useful knowledge from such big data is thus crucial to the success
of today’s organizations. In the past much work has been done to
develop the capabilities to perform offline analytics, which involve
complex tasks that take hours or days to finish, even on a modern
cloud platform. For example, MapReduce [3] harnesses the com-
puting power of interconnected commodity servers, provides strong
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fault tolerance and high parallelism for job processing, while hid-
ing the complexity of the system and exposing a simple interface
to users. Recently, considerable attention has been shifted to an-
swering analytics queries online (also referred to as interactive or
real-time analytics), which outputs results within seconds once the
user issues a query. Such capabilities are an important complement
to offline analytics; in particular, they enable users to quickly ex-
plore and obtain initial insights of the big data. Since the user often
waits online for the results, speed is key in online analytics.

Early attempts build analytics capabilities on top of a MapRe-
duce system, e.g., Hadoop [14]. Notably, Hive [13] translates SQL
queries into MapReduce jobs, and subsequently executes them us-
ing Hadoop. YSmart [7], another SQL-to-MapReduce translator,
provides sophisticated optimizations for complex queries. This ap-
proach, however, is not suitable for online analytics, since MapRe-
duce is designed for offline tasks, and, thus, involves high overhead
for starting and executing each job. Another methodology is to
build MapReduce/RDBMS hybrids. For instance, HadoopDB [1]
(commercialized as Hadapt [2]) uses relational databases to per-
form MapReduce tasks. PolyBase [4] improves the scalability of
SQL Server using a novel “split query processing” method that
transforms queries into MapReduce jobs. Finally, Sailfish [9] im-
proves MapReduce performance by batching disk I/Os. These sys-
tems tend to inherit the offline processing designs of MapReduce,
and, thus, are not ideal for real-time query processing.

Recently, following Google’s publication of Dremel [8] and F1
[12, 11], there has been increasing interests in building real-time
query processing tools that answer queries directly, without invok-
ing MapReduce. For example, Cloudera Impala [10] processes
SQL queries over data stored in HDFS, the file system of Hadoop,
and/or in HBase1, a “NoSQL” data management system that fea-
tures a high level of schema flexibility at the expense of limited
query processing capabilities compared to an RDBMS. Shark [5]
is the online query processing module built on top of Spark[15],
a novel in-memory big data processing platform. Proprietary sys-
tems include Amazon Redshift2, which, like Google’s Dremel and
F1, has few technical details revealed.

Our goal is to perform online, real-time analytics over big tem-
poral data, such as call logs from a large mobile network opera-
tor. Queries on such data often contain temporal operations. We
observe that existing systems have two major limitations that ren-
der them unsuitable for our cause. First, as we show in Section 2,
the current generation of existing systems cannot fully utilize the
parallel computing capabilities of modern servers, which typically
have multiple CPU cores and hard drives. While it is possible to
subdivide each server into virtual machines, doing so incurs high

1http://hbase.apache.org
2http://aws.amzaon.com/redshift



overhead, e.g., communications between virtual machines has to
go through network sockets. Second and more importantly, existing
systems are not optimized for temporal data. Hence, we have been
building OceanRT (pronounced "ocean art"), a novel online analyt-
ics engine for large temporal data. Instead of reusing components
from a MapReduce-like system, OceanRT redesigns the computing
architecture and storage scheme to obtain a higher level of paral-
lelism and improved data locality, and to manage temporal data
more efficiently. We have implemented a prototype of OceanRT,
and evaluated it using large real data and queries. The results in-
dicate that OceanRT can obtain up to 10x speedup compared to
the current state-of-the-art, especially for complex queries involv-
ing joins and subqueries. We thus plan to demonstrate OceanRT to
SIGMOD attendees with real data and use cases.

In the following, Section 2 describes the OceanRT system. Sec-
tion 3 presents preliminary evaluation results comparing OceanRT
with existing systems on real data. Section 4 describes our plan for
the demo. Section 5 contains concluding remarks.

2. SYSTEM OVERVIEW
OceanRT includes both a novel computing architecture and a

new storage scheme for performing analytics in real time over tem-
poral data. Sections 2.1 and 2.2 present the computing architecture
and the storage scheme of OceanRT, respectively.

2.1 Computing Architecture
An OceanRT cluster consists of multiple interconnected com-

modity servers. We employ Zookeeper3 to manage the states of the
nodes. Similar to Impala, the user can submit a HiveQL query (a
dialect of SQL used in Hive [13]) to any node in OceanRT; the node
receiving the query is responsible for parsing the query, dispatch-
ing (parts of) the query to relevant nodes for execution, collecting
(partial) query results, and returning the results to the user. To do
this, each node runs a Parsing Engine (PE), shown in Figure 1(a).
The PE contains (i) a parser, which parses incoming SQL queries
into execution plans, (ii) an optimizer, which optimizes the plans,
e.g., by re-ordering joins and (iii) a dispatcher, which routes the
query to nodes that stores relevant data. OceanRT employs Post-
greSQL4 parser and optimizer modules in its PE, which leverages
the time-proven query optimization techniques in PostgreSQL.
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Figure 1: PE and AQE in OceanRT

After generating the query execution plan, the dispatcher module
of the PE assigns each logical operator to an Access-Query Engine
(AQE), which executes the operator and generates (intermediate)
results. The dispatching is performed according to the AQE state
information (e.g., busy/idle) maintained by Zookeeper, as well as
the network distance between an AQE and the data required by
the logical operator (e.g., AQEs with local data are preferred). As
we detail soon, each node runs multiple AQEs, depending on its
3http://zookeeper.apache.org
4http://www.postgresql.org

hardware configuration. As illustrated in Figure 1(b), an AQE con-
tains a planner, a coordinator, and an executor. It can read/write
data stored in HDFS, HBase, or a relational database such as Post-
greSQL. As their respective names suggest, the planner determines
the appropriate algorithm for executing the assigned task; the co-
ordinator coordinates with other AQEs to retrieve data (e.g., when
processing a join) or partial/subquery results; the executor performs
the action specified in the logical operator.
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Figure 2: Architecture of OceanRT

So far, our designs for the PE and AQE are fairly standard for
an online analytics engine, e.g., they resemble the design of the
Impala daemon, albeit more refined with the help of PostgreSQL.
The main novelty in the architectural design of OceanRT lies in
two aspects: (i) each physical nodes runs multiple AQEs, accord-
ing to its hardware configuration, and (ii) all AQEs are connected
through Remote Direct Memory Access (RDMA) [6]. Figure 2
shows the architecture of OceanRT. Having multiple AQEs inside
each node enables OceanRT to achieve a higher degree of paral-
lelism, compared to existing real-time analytics systems in which
every node is a single processing unit. For instance, consider a
node with two hard drives and two CPU cores. By dividing the
computation resources into two AQEs, each with a hard drive and
a CPU core, the node is able to perform two independent data re-
trieval and/or processing tasks simultaneously. In practice, a higher
number of AQEs may improve overall performance, e.g., when one
AQE is busy reading data from disk, another may perform CPU-
intensive computations, and yet another retrieving data from the
network. Determining the appropriate number of AQEs per node,
and scheduling them properly to maximize performance are inter-
esting research topics of their own.

The set of all AQEs are connected through an RDMA link, which
performs data transmission directly between two memory buffers,
without consuming CPU cycles or copying data to/from kernel mem-
ory. This implies (i) that data transfer between different AQEs
within the same node incurs negligible overhead, as the data are
simply copied from one memory location to another, and (ii) data
exchange between AQEs in different nodes are also faster than ex-
isting systems. Our current prototype of OceanRT applies a soft-
ware implementation of RDMA contained in Hadoop-RDMA [6].
Hardware RDMA promises even better performance. Note that ef-
fective use of RDMA is non-trivial as it complicates the memory
management of an AQE, e.g., a page that is currently being trans-
ferred to another AQE under RDMA must not be swapped to disk.

2.2 Storage Scheme
As described in Section 2.1, OceanRT can process data stored in

HDFS, HBase, and/or a relational DBMS. In order to provide high
fault-tolerance, HBase uses HDFS as the underlying file system.
For the same reason, in our current implementation of OceanRT,
the RDBMS (in particular, PostgreSQL) also employs HDFS to
store data files. Hence, data storage in OceanRT ultimately re-
lies on HDFS. To further improve the performance of OceanRT, we
modified HDFS to better fit the computing architecture of OceanRT



as well as temporal data management, leading to a novel storage
scheme. It is worth mentioning that our modifications to HDFS do
not compromise the functionalities of stock HDFS; in other words,
OceanRT-optimized HDFS can be directly used in place of HDFS
whenever the latter is applicable.

In a nutshell, HDFS achieves fault tolerance as follows. Each
data file is partitioned into blocks of fixed size, e.g., 128MBytes.
Each block is replicated on multiple servers (3 by default). Specif-
ically, when appending a new block to a file, stock HDFS stores
one copy of the block at the node performing the write operation,
another copy at a random node at the same rack as the first copy,
and yet another copy at a random node not in the same rack [14].
Accordingly, after writing the entire file to HDFS, the node per-
forming the write operation stores a complete copy of the file; the
other two copies of the same file, however, are fragmented, among
nodes within the same rack and nodes not in the same rack, respec-
tively. Such file fragmentation adversely affects the performance
of OceanRT. For instance, consider the situation that the query re-
quires scanning multiple blocks of a file, and the node storing the
complete file is busy. The PE then dispatches the scan to an AQE
that only stores parts of the file, which must request for blocks from
other nodes, leading to high latency due to network transmissions.

To alleviate file fragmentation, OceanRT organizes blocks of a
file into larger partitions. Each partition contains M blocks; mean-
while, each partition is stored completely in at least N nodes. For
instance, when M = 10 and N = 2, each partition contains 10
blocks; these 10 blocks are stored together in at least 2 nodes, each
of which is able to scan the entire partition locally without network
transmissions. M and N are system parameters whose best values
depend upon the application. Higher values of M and/or N lead to
a lower level of fragmentation, but also increased risk for workload
imbalance, and vice versa. Hence, a larger M and/or N is more
suitable for applications that involve the scanning of large portions
of files. Note that organizing blocks into larger partitions is dif-
ferent from having large block sizes; the latter approach leads to
increased network transmissions as a block is a basic unit of read-
ing, as well as limited parallelism. Meanwhile, since the small-
est unit of storage is still a block, introducing partitions does not
compromise existing functionalities of HDFS. Hence, OceanRT-
optimized-HDFS is backward compatible with stock HDFS.

Finally, using the new partition-block file organization, we op-
timize OceanRT storage for temporal data and queries, as follows.
Each block of a temporal data file is assigned a hash value com-
puted based on the temporal attributes of the records contained in
the block. Then, blocks are assigned to partitions according to their
hash values. Thus, each partition stores data with similar temporal
attributes, achieving the effect of a primary index on the temporal
attributes. When processing a query with a temporal range selec-
tion, instead of scanning an entire relation, OceanRT only scans the
partitions that contain records whose temporal attributes fall within
the range. Note that building a traditional primary index is not
feasible, as such an index requires sorting the entire file, which is
costly for big data; further, since updates are not ordered by time,
they may cause frequent re-organizations, which is prohibitively
expensive. The hashing scheme in OceanRT does not incur these
costs; as a tradeoff, it also retrieves a larger portion of the data
compared to a traditional primary index. We omit further details
for brevity, and our demo will show the data storage of OceanRT
using a real example.

3. PERFORMANCE OF OCEANRT
We use a real mobile call log dataset to evaluate OceanRT. Due

to data confidentiality issues, we are not allowed to publish details

of the data or its schema. Hence, for the sake of the evaluation, we
extracted a random sample from the real data, and transformed the
sample to fit an artificial schema. Figure 3 illustrates this schema,
which contains 5 tables: Users, Services, Locations, CallLogs, and
Apps. Among these, Services, CallLogs and Users contain tempo-
ral data.

Figure 3: Schema of the dataset used in the evaluations

Figure 4 lists the three queries used in our evaluations, which
were composed based on real analytics tasks and the schema shown
in Figure 3. Queries Q1 and Q2 represent single-table selections
and GROUPBY aggregations, respectively. Q3 is a complex join
query involving multiple subqueries, GROUPBY aggregation, sort-
ing and top-k selection. All three queries involve temporal selec-
tions, which are common in analytics tasks on the call log dataset.
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Figure 4 lists the three queries used in our evaluations, which 
were composed based on real analytics tasks and the schema 
shown in Figure 3. Queries Q1 and Q2 represent single-table 
selections and GROUPBY aggregations, respectively. Q3 is a 
complex join query involving multiple subqueries, GROUPBY 
aggregation, sorting and top-k selection. All three queries involve 
temporal selections, which are common in analytics tasks on the 
call log dataset. 

Q1: Single-table selection 
SELECT PhoneNum, AppID, LocID  
FROM Services  
WHERE Traffic > 100M AND Start ≥ DATE('20131001') 
AND End ≤ DATE('20131003') 
 
Q2: Single-table aggregation 
SELECT PhoneNum, LocID, SUM(MsgBytes), SUM(CallTime)  
FROM CallLogs 
WHERE Start ≥ DATE('20131001')  AND End ≤ DATE('20131003') 
GROUP BY PhoneNum, LocID 
 
Q3: Complex join with subqueries 
SELECT Name, SUM(MsgBytes) SumMB, SUM(CallTime) SumCT, 

SUM(Traffic) SumTR 
FROM Users U  

INNER JOIN CallLogs C ON U.PhoneNum = C.PhoneNum 
INNER JOIN Services S ON C.PhoneNum = S.PhoneNum AND 
C.LogID = S.LocID 

WHERE LocID IN 
(SELECT LocID FROM Locations  
 WHERE GeoLoc in ('GUANGZHOU', 'SHENZHEN')) 

AND AppID IN  
(SELECT AppID FROM Apps WHERE Author='YOUTUBE') 

AND S.Start ≥ DATE('20131001')  AND S.End ≤ DATE('20131003') 
AND U.Age ≥ 18 
GROUP BY U.name ORDER BY SumMB, SumCT, SumTF 
LIMIT 1000 

Figure 4: Queries used in the evaluation 
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consisting of 10 commodity servers connected through a Gigabit 
Ethernet. Each node is equipped with two Intel Core i7-3770 
CPUs, 16 GB of RAM, and two 1TB hard drives. OceanRT 

Figure 4: Queries used in the evaluation

We performed preliminary evaluations on a small cluster of 10
commodity servers connected through a Gigabit Ethernet. Each
node is equipped with two Intel i7-3770 CPUs, 16 GB RAM, and
two 1TB hard drives. OceanRT assigns 2 AQEs per node. The
HDFS block size is fixed to 64MB. Figure 5 summarizes the evalu-
ation results, comparing OceanRT with Hive 0.10, Shark 0.80 and
Impala 1.1. For all three queries, OceanRT is significantly faster
than its competitors. The performance advantage of OceanRT is
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Figure 5: Evaluation results

more pronounced with more nodes in the cluster, and for com-
plex queries such as Q3. The performance of Shark and Impala
are comparable, with Impala slightly faster than Shark. OceanRT
is between 3x (Q2 with 3 nodes) to 10x (Q3 with 10 nodes) faster
than Impala, and between 60x to 200x faster than Hive.

4. DEMONSTRATION SCENARIO
The demo will show the computing architecture and storage scheme

of OceanRT. It will also compare the performance of OceanRT with
its competitors using the real call log dataset from a large Chinese
mobile network operator, which contains roughly 5 TB (about 4
billion records) per day. A random sample of the data is used in
our performance evaluations in Section 3.

Setup. Since the dataset is confidential, we will host it in a
private cloud with 100 nodes, and connect to the cloud remotely
during the demo. Meanwhile, the demo will only show the per-
formance (in terms of total running time and a breakdown into
CPU, I/O, networking costs, etc.) of different systems, not the data
records or query answers. OceanRT and its competitors, e.g., Hive,
Impala, Shark and possibly others, will be deployed to the private
cloud. Besides showing a performance comparison with a set of
preset queries, SIGMOD attendees can also issue ad hoc queries to
any of the deployed systems, using a command line interface.

Visualization. We will visualize the computing architecture and
storage scheme of OceanRT during the demo. Specifically, we will
show how the data is stored in the cloud, including statistics on
blocks, partitions, and temporal information. Using a number of
pre-selected queries, including Q1-Q3 described in Section 3, we
will demonstrate how these queries are parsed into logical execu-
tion plans, and dispatched to AQEs for execution. We will also
show the internals of an AQE when executing a task, such as table
scan, join, and GROUPBY/aggregation.

Story line. Consider that a mobile network operator wants to
investigate the behaviors of its subscribers in order to launch a new
promotion campaign. To do this, it first finds heavy users of the mo-
bile network, and analyzes their phone call patterns (e.g., whether
they make calls during the day or at night), web browsing history
(e.g., frequently visited websites), usage of value-add services (e.g.,
customized ringtones), and geo-locations. Using this information,
the mobile network operator decides on the selected customers of
the campaign, as well as the service package, e.g., browsing a news
website will be free of charge at night for customers in an area who
subscribe to a value-add service. Since there are numerous possi-
ble designs of the campaign, the mobile network operator may is-
sue many queries, and expect each to return results within seconds.
Hence, low-latency query processing is key in this application.

5. CONCLUSION
We have been building OceanRT, a real-time data analytics tool

for large temporal data. Compared to existing systems, OceanRT
employs a novel computing architecture with enhanced parallelism,
and a new storage scheme optimized for the new system architec-
ture as well as temporal data and queries. Evaluations using real
data and workload show that OceanRT can achieve 10x speedup
compared to state-of-the-art systems such as Impala and Shark.
The demo will show the performance and internal workings of
OceanRT, using real data on a private cloud. Regarding future
work, and interesting direction is to incorporate elastic resource
provisioning into OceanRT, so that each query only consumes cloud
resources (e.g., AQEs) sufficient to meet its quality-of-service re-
quirements [16].
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